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Superparamagnetic Clustering of Data
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We present a new approach for clustering, based on the physical properties of an inhomogeneous
ferromagnetic model. We do not assume any structure of the underlying distribution of the data.
A Potts spin is assigned to each data point and short range interactions between neighboring points
are introduced. Spin-spin correlations, measured (by Monte Carlo procedure) in a superparamagnetic
regime in which aligned domains appear, serve to partition the data points into clusters. Our method
outperforms other algorithms for toy problems as well as for real data. [S0031-9007(96)00104-4]

PACS numbers: 05.70.Fh, 02.50.Rj, 89.70.+c

Many natural phenomena can be viewed as optimiza- Clusters appear naturally in Potts models [12—-14] as
tion processes, and the drive to understand and analyzegions of aligned spins. Indeed, Fukunaga's previously
them yielded powerful mathematical methods. Thus whemproposed method [11] can be formulated as a Metropolis
wishing to solve a hard optimization problem, it may berelaxation of a ferromagnetic Potts modelfat= 0. The
advantageous to identify a related physical problem, forelaxation process terminates at some local minimum of
which these methods can be used. In recent years thetiee energy function, and points with the same spin value
has been significant interest in adapting numerical [1] agre assigned to a cluster. This procedure depends strongly
well as analytic [2,3] techniques from statistical physicson the initial conditions and is likely to stop at a metastable
to provide algorithms and estimates for good approximatstate that does not correspond to the correct answer. Our
solutions to hard optimization problems [4]. method generalizes Fukunaga's by introducing a finite

Cluster analysis is an important technique in exploratoriemperature at which the division into clusters is stable and
data analysis.Partitional clustering methods, that divide completely insensitive to the initial conditions and com-
the data according to natural classes present in it, hayg@lements other, graph based algorithms [15] by providing
been used in a large variety of engineering and scientifia clustering criterion which is sensitive to collective fea-
disciplines such as pattern recognition [5], learning [6], andures of the data set.
astrophysics [7]. A classification{s} is defined by assigning to each point

The problem of partitional clustering can be formally x; a labels; which may take integer values = 1,...,q.
stated as follows. With every one af=1,2,...,N  We define a cost functiof [{s}],
patterns represented as a poitin a d-dimensional
metric space, determine the partition of the€epoints H[{s}] = — ZJ,-jSSi,Sj, si=1,....q, (@
into M groups, calledtlusters,such that points in a cluster (i)
are more similar to each other than to points in differenwhere (i, j) stands for neighboring points and j, and
clusters. The value a¥ also has to be determined. Jij is some positive monotonically decreasing function

The two main approaches to partitional clusteringof the distance|lx; — x;||, so that the closer two points
are calledparametricand nonparametric In parametric are to each other, the more they “like” to belong to the
approaches some knowledge of the clusters’ structure same class. This cost function is the Hamiltonian of an
assumed (e.g., each cluster can be represented by a ceritdtomogeneous ferromagnetic Potts model [16].
and a spread around it). This assumption is incorporated We want to select a good classification using nothing
in aglobal criterion The goal is to assign the data points but Z{ [{s}]. Taking the usual path in information theory
to clusters so that the criterion is minimized. Typical [17], we choose the probability distribution which has the
examples arevariance minimization[8] and maximum most missing information and yet has some fixed average
likelihood [9]. In the last three years many parametriccostE. The resulting probability distribution is that of a
partitional cluster algorithms rooted in statistical physicsPotts system at equilibrium at inverse temperagisehich
were presented [8—10]. is the Lagrange multiplier determining the average energy

However, when there is na priori knowledge about or costE. Because the cost function (1) is symmetric
the data structure, it is more natural to adopt nonparawith respect to a global permutation of all labels, each
metric methods, using kbcal criterion to build clusters point is equally likely to belong to any of the classes.
by utilizing local structure of the data (e.g., by identifying Therefore the only way to extract meaningful information
high-density regions [11] in the data space). In the preser(br to assign clusters) out of the equilibrium probability
work we use a physical problem as an analog to that oflistribution is through correlations. The average spin-
nonparametric clustering, analyzing it by the methodol-spin correlation functior(d,,,,) is thus used to decide
ogy of statistical physics. whether or not two spins belong to the same cluster. In
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contrast with the mere interpoint distance, the spin-spinnteractions

correlation function is sensitive to the collective behavior | I3 — %2
of the system and is therefore a suitable quantity for Jij=J;i = TGX%_%>, (2)
defining collective structures (clusters). K 2a

As a concrete example, place a Potts spin at each of thﬁherel? is the average number of neighbors per site.

qlata points of Fig. 1. At high temperatures the system is (B) Calculation of thermodynamic quantities The
in a disordered (paramagnetic) phase. As the temperatu[:ﬁdering properties of the system are reflected by the

Is Iowergd a tyansition to auperparamagnetic _phasu:- susceptibility and the spin-spin correlation functi@ ;)

curs; spins within the same high density region becom?where(---} denotes a thermal average). Once”ﬁj}p
completely aligned, while different regions remain UNCOr-p e been determined. these quantities can be obtained
related. As the temperature is further lowered, the efby a Monte Carlo proc,:edure We used the Swendsen-
fective coupling between the three clusters (induced Vi"\’Nang (SW) algorithm [14]; it exhibits much smaller

the dilute background sp!ns) increases, unti! Fhey becomg, ;tocorrelation times [14] than standard methods and also
"%‘".gned- Even thoug.h_thls. is a pseudotransition (nOt.e.thﬁrovides an improved estimator [20] of the spin-spin
finite number of participating clusters) and the transition.,relation function

temperature of the background is much lower, we call this (C) Locating the superparamagnetic phasein order

“phag,e” pf aligned plu.sters.ferromagnenc. .__to locate the temperature range in which the system is in
This simple qualitative picture is supported by the first,, superparamagnetic phase we measure the susceptibil-

examplt_e presented in this Letter an:j by a ’r’nean fiel y x of the system which is proportional to the variance
calculation presented elsewhere [18]. “Real life” exampleg; i magnetizatiom:

like the two presented at the end of the Letter have a more

complicated structure of transitions and pseudotransitions. , _ N . 2, 2 _ (Nmax/N)g — 1
; . X (m?) = (m?),  m ~ .
Next we give the details of our method. T g — 1
(A) Determination of the interactiong;.—In common 3

with other “local methods,” we first determine a local Here Nya = max(Ny, N, N,} andN,, is the number
length scale~a, which we chose to be equal to the spinga\)/(vith the Vah;w.""’ 1 K

average nearest—n_elghbor .dlstan_ceThe val_ue ofa is At low temperatures the fluctuations of the magnetiza-
governgd by 'the high density reglons .and is smaller th.a'ﬂon are negligible, so the susceptibility, is small. At
the.typ|cal distance between points in the low dens.'tYTfS, the pseudotransition from the ferromagnetic phase to
regions. Our resqlts depend only weakly on th? deflnl'the superparamagnetic phase, we observed (see Fig. 2) a
tion of nearest nelghbor_s. In thg example of Fig. .1 W€ ronounced peak of. In the superparamagnetic phase
dle;'nﬁd neighbors as goalrsdof pm\r;\';s whose Vorcino! chekl)l uctuations of the superspins or clusters acting as a whole
[19] have a common boundary. We set nearest-neig Qesult in a nearly constant susceptibility. As the tem-
perature is further raised td,,, the superparamagnetic

to paramagnetic transitiony abruptly diminishes by a
factor that is roughly the volume of the largest cluster.
Thus the temperatures where a maximum of the sus-
ceptibility occurs and the temperature at whighde-
creases abruptly can serve as lower and upper bounds,
respectively, for the superparamagnetic phase. A sur-
prisingly good initial guess fof,, is provided [18] by

TS =~ ¢ 12/4In(1 + /q).
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FIG. 1. The classified data set. Points classified (@i, = 0 0.05 T 0.1
0.075 andé = 0.5) as belonging to the three largest clusters are
marked by crosses, triangles, ards. Single point clusters are FIG. 2. The susceptibility density of the data set of Fig. 1 vs
denoted by squares. temperature. Note the logarithmic scale of thaxis.
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(D) The clustering procedure—-Our method consists o.1s —— 0.60
of two main steps. First, we identify the range of tempera- 0.404

X 0.204
tures where the clusters appear (in the superparamagne o0.08T

phase). Second, at some temperature within this rang™

the correlation of nearest-neighbor spins is measured ar 0.081
used to identify the clusters. The procedure is summarizeo.os- 40.047
as follows: Assign to each poiit; a g-state Potts spin 0.024

variables; (here we chosg = 20). (b) Find the near-
est neighbors of each point according to a selected crite
rion (e.g., Voronoi tessellation [19]); measure the averag

nearest-neighbor distanee (c) Calculate the strength of FIG. 3. Frequency distribution of (a) distances between neigh-

the nearest-neighbor interactions using Eq. (2). (d) Us@oring points of Fig. 1 (scaled by the average distangand
an efficient Monte Carlo procedure [14] with the Hamil- (b) spin-spin correlation functions of neighboring points.
tonian (1) to calculate the susceptibilify. (e) Identify

the range of temperatures corresponding to the superpara- . . e
magnetic phase, betwed;, the temperature of maximal applied fog mfth(?d.'t a?d \;ve %btag:ved theksusc\:/(\e/ﬁtlblllty
x, and the (higher) temperaturg,, where y dimin- curve of Fig. 4(a); it clearly showswo peaks. en

ishes abruptly. Cluster assignment is performef.at — heated, the system flrst_breaks into two clustgﬂs at 0.1.

_ : : At T.us = 0.2 we obtain two clusters, of sizes 80 and
(Tys + Tps)/2. (f) Measure atT = T, the spin-spin 40 points of th I lust d to th ;
correlation function,(ési,x), for all pairs of neighboring » POINtS of the smallér cluster correspond 1o the Species

points; and;. (g) Clusters are identified according to Iris Setosa At T = 0.6 another pseudotransition occurs

. ST here the larger cluster splits into two. A&t = 0.7
a thresholding procedure. {6, ;) > 0, pointsx;, x; are whe o ; us
defined as “f?ie%ds.” Then all /mutual ?riends (in]cluding we identified clusters of sizes 45, 40, and 38, correspond-

friends of friends, etc.) are assigned to the same clustef}d t© the speciedris Versicolor, Virginica,and Setosa,

We chosed = 0.5, respectively. _ '
(E) The toy problem—Figure 1 contains three dense As opposed to the toy problem, the Iris data break into
regions of 2729, 1356, and 1084 points on a dilute backelusters intwo stages This reflects the fact that two of

ground of 831 points. The points are uniformly distributedthe three species are “closer” to each other than to the

in each of the regions, but the three dense regions are fBird_one; our r_nethod clearly handles very well such hier-
times denser than the background. Going through step%r(.;hIcal organization of the data}. 125 samples \(v'ere'clas-
(a) to (d) we obtained the susceptibility as a function ofS|f|ed correctly (as compared with manual classification);

temperature as presented in Fig. 2. Figure 1 presents tﬁé were left unclassified. No further breaking of clusters

clusters obtained a,,. = 0.075 using steps (f) and (g). was observed; all three disorder Bf, =~ 0.8 (since all

The sizes of the three largest clusters are 2759, 1380, 10&7”23 aLre OJ aliogtlthde tsam%?e?sﬁty).. licati
and the background decomposed into clusters of size 1. (G) Landsat [21] data—The following complications

Turning now to the effect of the parameters on thearise (in addition to unequal coupling between clusters):

procedure, we found [18] that the number of Potts states(a) the clusters differ in their density, and (b) the density

affects the sharpness of the transition [16] and théﬁfthe points within a cluster is not uniform; it decreases to-
\(iéllues ofTy, and T The higherg, the sharper the wards the perimeter of the cluster. We analyzed data taken
s ps- ’

transition, but the influence af on cluster assignment is fron’? a satellite image of the Earth consisting of 6437 “pix-
very weak. Also, choosing clustering temperatufegs els, e_ach of Wh'Ch IS represe;nted by fogr spectral bands.
other than the one suggested in (e) did not change th h.e. aimis to c_IaSS|fy the terrain of each pixel. The SUSCep-
classification significantly. Classification is not sensitive! llity curve Fig. 4(b) reveal$hree_pseqdotransﬂmns that
to the value of the threshold, and values in the range reflect the presence of the following hierarchy of clusters.

0.2 < 0 < 0.9 yielded similar results. The reason is that

the frequency distribution of the values of the spin-spin o, o F" " 77 "7 ('a); 0.015 ] '&b‘)':
correlation function exhibits two peaks, one néay and ] i 1
the other close to 1, while for intermediate values itis very £ . t 3 oot .
close to zero as is shown in Fig. 3(b). o - .

(F) The Iris data—A popular benchmark problem for

clustering procedures is the Iris data [5]. It consists of
measurement of four quantities, performed on each of . r
150 flowers. The specimens were chosen from three oo 0.2 0.4 0.6 0.8 1
species of Iris. The data constitute 150 points in four-

dimensional space. We determined .neighbors QCF_OrdinQIG. 4. Susceptibility density 7 /N of the (a) Iris data and
to the mutualK (K = 5) nearest-neighbors definition, (b) Landsat data as a function of the temperaftire
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At the lowest temperature two clustessand B appear. separation of the spin-spin correlatiofd, ,,) into strong
ClusterA splits at the second pseudotransition iAjoand  and weak, as evident in Fig. 3(b), reflects the existence of
A,. Atthe last pseudotransition clustéy splits againinto  two categories of collective behavior. Since the double
four clustersA|,i = 1,...,4. Atthis temperature the clus- peaked shape of the correlations distribution persists at
tersA, andB are no longer identifiable; their spins are in all relevant temperatures, the separation into strong and
a disordered state, since the density of pointdjrandB  weak correlations is a robust property of the proposed Potts
is significantly smaller than within the&] clusters. Thus model.
our method overcomes the difficulty of dealing with clus- We have also shown that our method is successful
ters of different densities by analyzing the data at severdh real life problems, where existing methods failed to
temperatures. overcome the problems posed by the existence of different

To overcome the more difficult problem posed by thedensity distributions and many characteristic lengths in
fact that the density within the clusters is monotonicallythe data.
decreasing as their perimeter is approached we addedWe thank I. Kanter and Y. Cohen for useful discussions
a second operation to step (g) [see (D) above] of ouand acknowledge the use of a public domain program
procedure: we connected each point to the neighbor withl9]. This research is supported by the U.S.-Israel
which it had the highest correlation. The six large cluster$inational Science Foundation (BSF), and the Germany-
which were identified in this manner, of sizes 1541, 1298]srael Science Foundation (GIF).
1066, 563, 407, and 306, match the manually obtained
land-use categories. 97% purity was obtained, meaning
that points belonging to different categories were almost
never assigned to the same cluster.
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