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Superparamagnetic Clustering of Data
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We present a new approach for clustering, based on the physical properties of an inhomog
ferromagnetic model. We do not assume any structure of the underlying distribution of the
A Potts spin is assigned to each data point and short range interactions between neighboring
are introduced. Spin-spin correlations, measured (by Monte Carlo procedure) in a superparam
regime in which aligned domains appear, serve to partition the data points into clusters. Our m
outperforms other algorithms for toy problems as well as for real data. [S0031-9007(96)00104-4

PACS numbers: 05.70.Fh, 02.50.Rj, 89.70.+c
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Many natural phenomena can be viewed as optimiz
tion processes, and the drive to understand and analy
them yielded powerful mathematical methods. Thus whe
wishing to solve a hard optimization problem, it may b
advantageous to identify a related physical problem, f
which these methods can be used. In recent years th
has been significant interest in adapting numerical [1]
well as analytic [2,3] techniques from statistical physic
to provide algorithms and estimates for good approxima
solutions to hard optimization problems [4].

Cluster analysis is an important technique in explorato
data analysis.Partitional clustering methods, that divide
the data according to natural classes present in it, ha
been used in a large variety of engineering and scienti
disciplines such as pattern recognition [5], learning [6], an
astrophysics [7].

The problem of partitional clustering can be formally
stated as follows. With every one ofi  1, 2, . . . , N
patterns represented as a point$xi in a d-dimensional
metric space, determine the partition of theseN points
into M groups, calledclusters,such that points in a cluster
are more similar to each other than to points in differen
clusters. The value ofM also has to be determined.

The two main approaches to partitional clusterin
are calledparametricand nonparametric. In parametric
approaches some knowledge of the clusters’ structure
assumed (e.g., each cluster can be represented by a ce
and a spread around it). This assumption is incorporat
in a global criterion. The goal is to assign the data points
to clusters so that the criterion is minimized. Typica
examples arevariance minimization[8] and maximum
likelihood [9]. In the last three years many parametri
partitional cluster algorithms rooted in statistical physic
were presented [8–10].

However, when there is noa priori knowledge about
the data structure, it is more natural to adopt nonpar
metric methods, using alocal criterion to build clusters
by utilizing local structure of the data (e.g., by identifying
high-density regions [11] in the data space). In the prese
work we use a physical problem as an analog to that
nonparametric clustering, analyzing it by the methodo
ogy of statistical physics.
0031-9007y96y76(18)y3251(4)$10.00
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Clusters appear naturally in Potts models [12–14]
regions of aligned spins. Indeed, Fukunaga’s previou
proposed method [11] can be formulated as a Metropo
relaxation of a ferromagnetic Potts model atT  0. The
relaxation process terminates at some local minimum
the energy function, and points with the same spin val
are assigned to a cluster. This procedure depends stro
on the initial conditions and is likely to stop at a metastab
state that does not correspond to the correct answer.
method generalizes Fukunaga’s by introducing a fin
temperature at which the division into clusters is stable a
completely insensitive to the initial conditions and com
plements other, graph based algorithms [15] by providi
a clustering criterion which is sensitive to collective fea
tures of the data set.

A classificationhsj is defined by assigning to each poin
$xi a labelsi which may take integer valuessi  1, . . . , q.
We define a cost functionH fhsjg,

H fhsjg  2
X
ki,jl

Jijdsi ,sj
, si  1, . . . , q , (1)

where ki, jl stands for neighboring pointsi and j, and
Jij is some positive monotonically decreasing functio
of the distance,k $xi 2 $xjk, so that the closer two points
are to each other, the more they “like” to belong to th
same class. This cost function is the Hamiltonian of
inhomogeneous ferromagnetic Potts model [16].

We want to select a good classification using nothi
but H fhsjg. Taking the usual path in information theor
[17], we choose the probability distribution which has th
most missing information and yet has some fixed avera
costE. The resulting probability distribution is that of a
Potts system at equilibrium at inverse temperatureb which
is the Lagrange multiplier determining the average ener
or cost E. Because the cost function (1) is symmetr
with respect to a global permutation of all labels, ea
point is equally likely to belong to any of theq classes.
Therefore the only way to extract meaningful informatio
(or to assign clusters) out of the equilibrium probabilit
distribution is through correlations. The average spi
spin correlation functionkdsi,sj l is thus used to decide
whether or not two spins belong to the same cluster.
© 1996 The American Physical Society
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contrast with the mere interpoint distance, the spin-s
correlation function is sensitive to the collective behav
of the system and is therefore a suitable quantity
defining collective structures (clusters).

As a concrete example, place a Potts spin at each o
data points of Fig. 1. At high temperatures the system
in a disordered (paramagnetic) phase. As the tempera
is lowered a transition to asuperparamagnetic phaseoc-
curs; spins within the same high density region beco
completely aligned, while different regions remain unco
related. As the temperature is further lowered, the
fective coupling between the three clusters (induced
the dilute background spins) increases, until they beco
aligned. Even though this is a pseudotransition (note
finite number of participating clusters) and the transiti
temperature of the background is much lower, we call t
“phase” of aligned clusters ferromagnetic.

This simple qualitative picture is supported by the fi
example presented in this Letter and by a mean fi
calculation presented elsewhere [18]. “Real life” examp
like the two presented at the end of the Letter have a m
complicated structure of transitions and pseudotransitio
Next we give the details of our method.

(A) Determination of the interactionsJij.—In common
with other “local methods,” we first determine a loc
length scale,a, which we chose to be equal to th
average nearest-neighbor distance. The value ofa is
governed by the high density regions and is smaller t
the typical distance between points in the low dens
regions. Our results depend only weakly on the defi
tion of nearest neighbors. In the example of Fig. 1
defined neighbors as pairs of points whose Voronoi c
[19] have a common boundary. We set nearest-neigh

FIG. 1. The classified data set. Points classified (withTclus 
0.075 andu  0.5) as belonging to the three largest clusters
marked by crosses, triangles, and3’s. Single point clusters are
denoted by squares.
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Jij  Jji 
1bK exp

µ
2

k $xi 2 $xjk
2

2a2

∂
, (2)

where bK is the average number of neighbors per site.
(B) Calculation of thermodynamic quantities.—The

ordering properties of the system are reflected by
susceptibility and the spin-spin correlation functionkdsi ,sj l
(where k· · ·l denotes a thermal average). Once theJij

have been determined, these quantities can be obta
by a Monte Carlo procedure. We used the Swends
Wang (SW) algorithm [14]; it exhibits much smalle
autocorrelation times [14] than standard methods and a
provides an improved estimator [20] of the spin-sp
correlation function.

(C) Locating the superparamagnetic phase.—In order
to locate the temperature range in which the system is
the superparamagnetic phase we measure the suscep
ity x of the system which is proportional to the varianc
of the magnetizationm:

x 
N
T

skm2l 2 kml2d, m 
sNmaxyNdq 2 1

q 2 1
.

(3)

HereNmax  maxhN1, N2, . . . , Nqj andNm is the number
of spins with the valuem.

At low temperatures the fluctuations of the magnetiz
tion are negligible, so the susceptibility,x, is small. At
Tfs, the pseudotransition from the ferromagnetic phase
the superparamagnetic phase, we observed (see Fig.
pronounced peak ofx. In the superparamagnetic phas
fluctuations of the superspins or clusters acting as a wh
result in a nearly constant susceptibility. As the tem
perature is further raised toTps, the superparamagneti
to paramagnetic transition,x abruptly diminishes by a
factor that is roughly the volume of the largest cluste
Thus the temperatures where a maximum of the s
ceptibility occurs and the temperature at whichx de-
creases abruptly can serve as lower and upper bou
respectively, for the superparamagnetic phase. A s
prisingly good initial guess forTps is provided [18] by
T est ø e21y2y4 lns1 1

p
q d.

FIG. 2. The susceptibility density of the data set of Fig. 1
temperature. Note the logarithmic scale of they axis.
3252
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(D) The clustering procedure.—Our method consists
of two main steps. First, we identify the range of temper
tures where the clusters appear (in the superparamagn
phase). Second, at some temperature within this ra
the correlation of nearest-neighbor spins is measured
used to identify the clusters. The procedure is summariz
as follows: Assign to each point$xi a q-state Potts spin
variablesi (here we choseq  20). (b) Find the near-
est neighbors of each point according to a selected cr
rion (e.g., Voronoi tessellation [19]); measure the avera
nearest-neighbor distancea. (c) Calculate the strength of
the nearest-neighbor interactions using Eq. (2). (d) U
an efficient Monte Carlo procedure [14] with the Hami
tonian (1) to calculate the susceptibilityx. (e) Identify
the range of temperatures corresponding to the superp
magnetic phase, betweenTfs, the temperature of maxima
x , and the (higher) temperatureTps where x dimin-
ishes abruptly. Cluster assignment is performed atTclus 
sTfs 1 Tpsdy2. (f) Measure atT  Tclus the spin-spin
correlation function,kdsi ,sj l, for all pairs of neighboring
points $xi and $xj . (g) Clusters are identified according t
a thresholding procedure. Ifkdsi ,sj

l . u, points $xi , $xj are
defined as “friends.” Then all mutual friends (includin
friends of friends, etc.) are assigned to the same clus
We choseu  0.5.

(E) The toy problem.—Figure 1 contains three dens
regions of 2729, 1356, and 1084 points on a dilute bac
ground of 831 points. The points are uniformly distribute
in each of the regions, but the three dense regions are
times denser than the background. Going through st
(a) to (d) we obtained the susceptibility as a function
temperature as presented in Fig. 2. Figure 1 presents
clusters obtained atTclus  0.075 using steps (f) and (g).
The sizes of the three largest clusters are 2759, 1380, 1
and the background decomposed into clusters of size 1

Turning now to the effect of the parameters on th
procedure, we found [18] that the number of Potts stat
q, affects the sharpness of the transition [16] and t
values of Tfs and Tps. The higherq, the sharper the
transition, but the influence ofq on cluster assignment is
very weak. Also, choosing clustering temperaturesTclus

other than the one suggested in (e) did not change
classification significantly. Classification is not sensitiv
to the value of the thresholdu, and values in the range
0.2 , u , 0.9 yielded similar results. The reason is tha
the frequency distribution of the values of the spin-sp
correlation function exhibits two peaks, one near1yq and
the other close to 1, while for intermediate values it is ve
close to zero as is shown in Fig. 3(b).

(F) The Iris data.—A popular benchmark problem for
clustering procedures is the Iris data [5]. It consists
measurement of four quantities, performed on each
150 flowers. The specimens were chosen from thr
species of Iris. The data constitute 150 points in fou
dimensional space. We determined neighbors accord
to the mutualK (K  5) nearest-neighbors definition
3253
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FIG. 3. Frequency distribution of (a) distances between neigh
boring points of Fig. 1 (scaled by the average distancea) and
(b) spin-spin correlation functions of neighboring points.

applied our method, and we obtained the susceptibilit
curve of Fig. 4(a); it clearly showstwo peaks. When
heated, the system first breaks into two clusters atT ø 0.1.
At Tclus  0.2 we obtain two clusters, of sizes 80 and
40; points of the smaller cluster correspond to the specie
Iris Setosa. At T ø 0.6 another pseudotransition occurs
where the larger cluster splits into two. AtTclus  0.7
we identified clusters of sizes 45, 40, and 38, correspon
ing to the speciesIris Versicolor, Virginica,and Setosa,
respectively.

As opposed to the toy problem, the Iris data break int
clusters intwo stages. This reflects the fact that two of
the three species are “closer” to each other than to th
third one; our method clearly handles very well such hier
archical organization of the data. 125 samples were cla
sified correctly (as compared with manual classification)
25 were left unclassified. No further breaking of clusters
was observed; all three disorder atTps ø 0.8 (since all
three are of about the same density).

(G) Landsat [21] data.—The following complications
arise (in addition to unequal coupling between clusters
(a) the clusters differ in their density, and (b) the density
of the points within a cluster is not uniform; it decreases to
wards the perimeter of the cluster. We analyzed data take
from a satellite image of the Earth consisting of 6437 “pix-
els,” each of which is represented by four spectral band
The aim is to classify the terrain of each pixel. The suscep
tibility curve Fig. 4(b) revealsthreepseudotransitions that
reflect the presence of the following hierarchy of clusters

FIG. 4. Susceptibility densityxTyN of the (a) Iris data and
(b) Landsat data as a function of the temperatureT .
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At the lowest temperature two clustersA and B appear.
ClusterA splits at the second pseudotransition intoA1 and
A2. At the last pseudotransition clusterA1 splits again into
four clustersAi

1, i  1, ..., 4. At this temperature the clus
tersA2 andB are no longer identifiable; their spins are
a disordered state, since the density of points inA2 andB
is significantly smaller than within theAi

1 clusters. Thus
our method overcomes the difficulty of dealing with clu
ters of different densities by analyzing the data at seve
temperatures.

To overcome the more difficult problem posed by t
fact that the density within the clusters is monotonica
decreasing as their perimeter is approached we ad
a second operation to step (g) [see (D) above] of o
procedure: we connected each point to the neighbor w
which it had the highest correlation. The six large clust
which were identified in this manner, of sizes 1541, 129
1066, 563, 407, and 306, match the manually obtain
land-use categories. 97% purity was obtained, mean
that points belonging to different categories were alm
never assigned to the same cluster.

(H) Comparison with the performance of other no
parametric clustering algorithms.—The algorithms
[11,15] tested were valley seeking (Fukunaga), mi
mal spanning tree (Zhan),K shared neighbors (Jarvis
mutual neighborhood (Gowda), single linkage metho
complete linkage method, minimum variance (Ward), a
arithmetic averages (Sokal). The results from all the
depend on various parameters in an uncontrolled w
for all methods we used thebestresult obtained. For the
toy problem of (E) above only the single linkage and o
method succeeded. The minimal spanning tree obtai
the most accurate result for the Iris data, followed
our method, while the remaining clustering techniqu
failed to provide a satisfactory result. Only Fukunaga
and our method succeeded in recovering the structur
the Landsat data. Fukunaga’s method, however, yiel
for different (random) initial conditions grossly differen
answers, while our answer was stable.

The central feature of our method is to change t
similarity index of the problem from the interpoint distanc
k $xi 2 $xjk to the spin-spin correlation functionkdsi ,sj

l.
This new similarity index has the enormous advantage t
it is a function of a pair’s neighborhood. Two neighborin
points in the low density region, with smallk $xi 2 $xjk are
not in the same cluster, while points at the same distan
taken from the dense region,are. The magnetic mode
and its similarity index are sensitive to collective behav
of the region to which the pair belongs. As shown
Fig. 3(a), the frequency distribution of distances betwe
neighboring points of Fig. 1k $xi 2 $xjk does not even hint
that a natural cutoff distance, which separates neighbo
points into two categories, exists. On the other ha
n

-
ral

e
ly
ded
ur
ith
rs
8,
ed
ing
st

-

i-
,
d,
d

se
y;

r
ed
y

es
’s
of

ed
t

e
e

at
g

ce,

r
n
en

ing
d,

separation of the spin-spin correlationskdsi ,sj l into strong
and weak, as evident in Fig. 3(b), reflects the existence
two categories of collective behavior. Since the doubl
peaked shape of the correlations distribution persists
all relevant temperatures, the separation into strong a
weak correlations is a robust property of the proposed Po
model.

We have also shown that our method is successf
in real life problems, where existing methods failed to
overcome the problems posed by the existence of differe
density distributions and many characteristic lengths
the data.
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