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Harris, Kenneth D., Darrell A. Henze, Jozsef Csicsvari, Hajime
Hirase, and György Buzsáki.Accuracy of tetrode spike separation
as determined by simultaneous intracellular and extracellular mea-
surements.J Neurophysiol84: 401–414, 2000. Simultaneous record-
ing from large numbers of neurons is a prerequisite for understanding
their cooperative behavior. Various recording techniques and spike
separation methods are being used toward this goal. However, the
error rates involved in spike separation have not yet been quantified.
We studied the separation reliability of “tetrode” (4-wire electrode)-
recorded spikes by monitoring simultaneously from the same cell
intracellularly with a glass pipette and extracellularly with a tetrode.
With manual spike sorting, we found a trade-off between Type I and
Type II errors, with errors typically ranging from 0 to 30% depending
on the amplitude and firing pattern of the cell, the similarity of the
waveshapes of neighboring neurons, and the experience of the oper-
ator. Performance using only a single wire was markedly lower,
indicating the advantages of multiple-site monitoring techniques over
single-wire recordings. For tetrode recordings, error rates were in-
creased by burst activity and during periods of cellular synchrony. The
lowest possible separation error rates were estimated by a search for
the best ellipsoidal cluster shape. Human operator performance was
significantly below the estimated optimum. Investigation of error
distributions indicated that suboptimal performance was caused by
inability of the operators to mark cluster boundaries accurately in a
high-dimensional feature space. We therefore hypothesized that au-
tomatic spike-sorting algorithms have the potential to significantly
lower error rates. Implementation of a semi-automatic classification
system confirms this suggestion, reducing errors close to the estimated
optimum, in the range 0–8%.

I N T R O D U C T I O N

Most knowledge about the physiological function of the
brain is based on sequential analysis of single-site recordings.
Although it has long been recognized that the computational
power of complex neuronal networks cannot fully be recog-
nized by studying the properties of single cells or the activity
of a few selected sites, experimental access to the emergent
properties of cooperating neurons has largely been impossible
until quite recently. Direct investigation of the temporal dy-
namics of neuronal populations can only be based on simulta-
neous observation of large neuronal aggregates (Buzsaki et al.
1992; Wilson and McNaughton 1993). The two critical re-
quirements for achieving this goal are placing a large number

of recording electrodes in a small amount of tissue without
significant tissue damage and efficient isolation of action po-
tentials emanating from individual neurons. Action potentials
generated by neurons (“unit” or “spike” activity) can be mon-
itored by extracellular glass pipettes, single etched (sharp)
electrodes, or multiple-site probes. The closer the electrode to
the soma of a neuron, the larger the size of the extracellularly
recorded spikes. Whereas glass pipettes and high-impedance
sharp metal electrodes can be used to monitor the activity of a
single cell (Evarts 1968; Georgopoulos et al. 1993), these
electrodes are not always practical in freely moving animals
because small movements of the electrode can damage the
neuron and because isolation of large numbers of neurons with
independently moving drives is difficult (Kruger and Aiple
1988; Llinas and Sasaki 1989; McNaughton et al. 1996).
Larger size wires can record the activity of multiple neurons
and provide better mechanical stability because the electrode
tip is not placed directly against the cell membrane. The use of
multiple recording channels from the same neuron(s) provides
improved methods for single-unit sorting, based on the tempo-
ral coherence of spikes across channels (Drake et al. 1988;
Gray et al. 1995; McNaughton et al. 1983; Nadasdy et al. 1998;
Recce and O’Keefe 1989; Wilson and McNaughton 1993). The
most widely used multiple-site probe, the wire “tetrode”
(Recce and O’Keefe 1989; Wilson and McNaughton 1993),
separates neurons based on their spatial location, assuming that
neurons are point sources of action potential-associated cur-
rents.

There are three stages between the recording of extracellular
unit activity and the identification of spikes representing the
activity of a single neuron. The first stage is spike detection, in
which the electrical activity measured on the electrodes is used
to derive the times corresponding to extracellular spikes. This
is usually achieved by high-pass filtering followed by thresh-
olding and may be done by hardware or software. The second
stage is feature extraction. During this stage, a feature vector
(i.e., an array of quantitative parameters) is calculated for every
spike. In the simplest cases, the feature vector represents the
amplitude of the spikes recorded by the four tetrode sites. More
advanced methods quantify additional information about the
spikes, such as waveshape and discharge pattern. Waveshapes
may be quantified by measuring parameters such as spike
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width, or by principal component analysis (Abeles and Gold-
stein 1977). The third stage is “clustering” of spikes. In this
stage spikes with similar feature vectors are grouped into
clusters, assumed to represent the spikes of a single neuron. In
most laboratories, the clustering stage is done manually, with a
graphical user interface that displays scatter plots in feature
space and allows the operator to separate the clusters by
drawing polygons or straight lines around them (Gray et al.
1995; Rebrick et al. 1997; Skaggs and McNaughton 1996;
Wilson and McNaughton 1993; Wood et al. 1999). This pro-
cess is time consuming, and may be affected by subjective
factors. It has been proposed that automatic methods may
significantly speed up the clustering process, and reduce the
effect of subjective factors (Fee et al. 1996; Lewicki 1998;
Sahani 1999; Wright et al. 1998).

A major problem with all currently used spike separation
methods is that their reliability cannot be verified with inde-
pendent methods, and thus errors inherent in subjective clus-
tering by the human operator cannot be measured quantita-
tively. Errors can occur because spikes belonging to different
neurons are grouped together (false positive, Type I, or com-
mission error) or because not all spikes emitted by a single
neuron are grouped together (false negative, Type II, or omis-
sion error). In this paper, we quantified the error rates of spike
separation methods. This was achieved by simultaneous re-
cording from the same neuron intracellularly with a glass
pipette and extracellularly with a tetrode (Henze et al. 2000;
Wehr et al. 1998). This approach allowed us to reveal the major
causes of error in the spike separation process.

M E T H O D S

Simultaneous intracellular-extracellular recording in
anesthetized rats

Description of the surgical and implantation methods are described
in the accompanying paper (Henze et al. 2000).

Spike detection

The continuously recorded wideband signals were digitally high-
pass filtered (Hamming window-based finite impulse response filter,
cutoff 800 Hz, filter order 50). Spike detection was achieved by a
previously described system (Csicsvari et al. 1998). Briefly, the root-
mean-square power of the filtered signal was computed using a sliding
window. The mean and standard deviation of the power were com-
puted, and spikes were extracted when the power exceeded a threshold
derived from the standard deviation from the baseline mean. The
spikes were then upsampled using the sampling theorem, and the
waveforms were realigned by peak position.

Feature vector extraction

Feature vectors were extracted from the spike waveforms in two
ways. In the first method, the feature vector consisted of the peak-to-
peak (i.e., maximum-to-minimum) amplitudes of the resampled fil-
tered waveforms. In the second method, we employed a principal
component analysis (PCA) to create feature vectors (Abeles and
Goldstein 1977; Csicsvari et al. 1998). For each channel, the re-
sampled waveforms of all spikes were pooled and the first three
principal components of the waveform set were found. A 12-dimen-
sional feature vector was then created for each spike by projecting the
waveform on each channel onto each of the three principal compo-
nents.

Manual cluster cutting

The feature vectors were clustered using a previously developed
custom graphical interface program (gclust). This program allows the
operator to select two feature vector components to produce a two-
dimensional scatter plot for the chosen components. The operator then
draws polygons in the two-dimensional space to assign spikes to
individual clusters. By iteratively viewing different projections, the
operator can refine the boundaries of clusters. The program also
displays superimposed waveforms for each cluster, autocorrelograms
for each cluster, and cross-correlograms for all pairs of clusters.

Correspondence between intracellular and extracellular
traces

Intracellular action potentials were detected by the method de-
scribed in the accompanying paper. As a function of the site of the
impalement of the neuron (somatic vs. dendritic), the delay between
the peak of the intracellular action potential and the negative peak of
the wideband recorded extracellular spike varied as much as 1 ms
(Henze et al. 2000). However, the delay was constant for a given set
of intracellular and extracellular recordings. Some jitter of the extra-
cellular peak was caused by the background activity. Therefore ex-
tracellular spikes corresponding to intracellular action potentials were
identified if they occurred within 0.25 ms on either side of the peak of
the extracellular spike, as predicted by the intracellular spike. The
false positive error rate was determined as the percentage of spikes
clustered by an operator that were not correlated by the simultaneous
presence of an intracellular action potential. The false negative error
rate was determined as the percentage of the intracellular spikes for
which the operator’s cluster did not contain a corresponding extracel-
lular spike.

Best ellipsoid error rates

To estimate the optimal clustering performance for a given set of
feature vectors, we defined a measure called the “best ellipsoid error
rate” (BEER). This measure was designed to estimate the optimal
clustering performance for a given set of feature vectors by searching
over all possible ellipsoidal cluster boundaries. In the present context,
“optimal” may be defined in several different ways since it is possible
to give different weights to Type I and Type II errors. We therefore
introduced a “conservatism” parameter and defined the optimal ellip-
soid to be the one that minimized a cost function equal to the weighted
averaged Type I and Type II errors, with weights specified by the
conservatism parameter. By systematically varying this parameter, the
BEER method produced a curve, illustrating the trade-off between
Type I and Type II errors. The minimization of the cost function over
the space of ellipsoidal cluster boundaries was performed by a two-
layer neural network. The first or “input” layer contained one node for
every element of the feature vector plus one node for each pairwise
product of feature vector elements (so for ann-dimensional feature
vector, this layer would haven 1 n(n 11)/2 nodes). The second or
“output” layer had a single logistic node which was trained to be 1 if
the spike belonged to the identified cell and 0 otherwise. The network
was trained by the “quickprop” algorithm (Fahlman 1988), modified
to allow for differential weighting of Type I and Type II errors. After
convergence, the weights of the network specified an optimal qua-
dratic criterion for spike identification, i.e., an ellipsoidal cluster
boundary. To reduce the training time of the network and to ensure
that it did not converge to an incorrect local maximum, the initial
values of the weights were specified by the ellipsoid whose center and
axes were derived from the mean vector and covariance matrix of the
feature vectors corresponding to intracellularly identified spikes.

Error rates were evaluated with a cross-validation method. The data
were split into two halves consisting of even and odd spike numbers.
The network was trained twice, once on each half of the data, and
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tested on the other half. This method produced two sets of error
percentages for each value of the conservatism parameter, i.e., two
error curves. The network was deemed to have converged, and train-
ing was terminated when the percentage errors on the test set had not
changed more than 0.1% within the last 15 training epochs. The final
percentage error value was then taken to be the mean error value over
these last 15 epochs. The computations were performed on an IBM
SP2 station (IBM, Armonk, NY) with a custom written C11 pro-
gram.

The BEER measure provides an estimate of the optimal perfor-
mance of any clustering system, automatic or manual. It determines
the location of the optimal cluster based on a knowledge of which
spikes correspond to the identified cell (i.e., it performs supervised
learning). This is only possible because of the simultaneous intracel-
lular recording. Manual or automatic spike sorting systems will not
have this knowledge (i.e., they must perform unsupervised learning).
The BEER method therefore estimates an upper bound on the perfor-
mance achievable by any unsupervised system. This upper bound will
be approached by an automatic system based on an accurate proba-
bilistic model in the limit of a large number of data points (Anderson
1984). It should be emphasized that the ellipsoidal cluster boundary
used by the BEER measure is not necessarily optimal. Even for
perfectly ellipsoidal clusters, the optimal cluster boundary will be
given not by a single quadratic but by an intersection of quadratics. A
search over all such boundaries is possible in theory but would require
excessive computer time. Therefore the BEER measure may under-
estimate optimal possible performance.

Prediction of cluster covariance matrix from background
activity

To compare the cluster shape to that predicted by a fixed spike
shape superimposed with background noise, we extracted periods of
background activity containing no extracellular spikes. These were
determined by removing 32 samples around every extracellularly
detected spike and retaining any remaining intervals of 100 samples or
longer. The auto- and cross-covariance functions of the background
activity were determined from these periods. These functions were
used to create Toeplitz matrices for the time-domain covariance
matrix between each pair of channels. The covariance between two
principal components for the selected channels was then obtained by
pre- and post-multiplying by the time-domain projection template
used to generate the principal components. Analysis was performed in
MATLAB (The MathWorks, Natick, MA).

Detection of sharp waves

Sharp waves were detected based on the occurrence of their asso-
ciated high-frequency ripples. Broadband extracellular signals were
filtered between 100 and 250 Hz using a digital finite impulse re-
sponse filter, rectified, and smoothed using a median smoothing
algorithm (LabView, National Instruments, Austin, TX). The occur-
rence of a ripple was determined based on a deflection of the pro-
cessed extracellular signal.7 SDs from the baseline. The start and
end of the ripple were then determined from the closest zero values
preceding and following the threshold crossing.

Automatic cluster cutting

To gauge the practicability of automatic cluster cutting, we tested
the program AutoClass (Cheeseman and Stutz 1996, http://ic-www.
arc.nasa.goc/ic/projects/bayes-group/autoclass). The program was
used with the multivariate normal mode, with two parameters changed
from their default values (max_n_tries5 50, rel_delta_range5 0.01),
to reduce running time. As AutoClass tended to overcluster the data,
the output of the program was further examined by a human operator,
using the same program used for manual cluster cutting. Nearby

clusters with visible refractory period in the cross-correlogram were
judged to correspond to a single cell, and merged. In one case, a
cluster produced by the program showed a bimodal shape, and was
judged to correspond to two cells. This was confirmed by the cross-
correlogram of the two subclusters, which showed no refractoriness or
burst shoulders.

R E S U L T S

Errors of human operators

We recorded from 33 neurons in 30 rats, both intracellularly
and extracellularly (Henze et al. 2000). Of these, we selected
six data sets from three neurons, which contained sufficient
action potentials for statistically significant error analysis, and
which represented various levels of difficulties in clustering
related to amplitude and “burstiness.”

Nine human operators were asked to cluster the feature
vector sets for these six sessions. The error rates of the oper-
ators are shown in Table 1 and Fig. 1. There was a spread of
error rates with some operators being more “conservative”
(making more false negative errors but less false positive
errors) and others being more “liberal” (making less false
negative errors but more false positive errors). The same op-
erators fell in similar portions of the scale on several data sets,
indicating some individual bias. In general, neurons with lower
amplitude spikes, burst patterns, or several simultaneously
active neighbors were more difficult to cluster. The potential
causes of the human errors are considered in detail in the
following text.

CAUSES OF ERROR. Similarity of spikes of different cells.Fig-
ure 2,A andB, insets,illustrates the mean extracellular wave-
forms of an identified cell (cell 2 in Table 1) together with the
mean waveforms of spikes emitted by another cell recorded by
the same tetrode. The latter neuron was not intracellularly
recorded, and spikes of this cell were determined by our
standard clustering method. Based on our cell classification
criteria (Csicsvari et al. 1999), this second cell was also a
pyramidal cell. The amplitude profile of the confounding cell
across the four recording sites was very similar to the identified
cell. This similarity is also visible on the cluster diagram of the
first principal component (Fig. 2A). There is considerable over-
lap between the spikes of the identified neuron (red) and
confounding unit (green). However, the wave shape of the
confounding cell was different from the identified neuron. The
most prominent difference was a larger “initial positivity” and
a smaller late positive wave after the large negative deflection.
These differences in waveform were revealed by the second
principal component (Fig. 2B).

We assumed that the difference in waveshape between the
two pyramidal cells was due to electrode placement relative to
the somatodendritic axis. To test this assumption, we recorded
units with a linear six-site silicon probe (“hexatrode”) (Wise
and Najafi 1991). Figure 2Cshows the mean waveform for
each of the six sites along the probe for a presumed pyramidal
neuron, clustered in the usual manner. The waveform of the
spike varied as a function of distance from the soma in the
somatodendritic axis, supporting the hypothesis that the wave-
shape produced by a single cell can be very different at
different recording sites. These features of hexatrode-recorded
unit activity may be exploited for the improvement of cluster-
ing methods in the future.

403TETRODE SPIKE SEPARATION

 at U
niversitatsspital on D

ecem
ber 9, 2012

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


Variability of extracellular wave shapes from a single cell.
The “clouds” identifying individual clusters (i.e., hypothesized
neurons) were variable in shape and size. What determines the
spread of points in a cluster? In other words, what is the
probability distribution for the feature vectors of a cell in
cluster space? A first assumption is that the feature vectors
follow a multivariate normal distribution. One way to test this
is by calculating the Mahalanobis distance of points from the
cluster center (Gnanadesikan 1977; Johnson and Wichern
1992). Under the normal distribution assumption, the Mahal-
anobis distance of points from the cluster center will have ax2

distribution. The quantile-quantile plot in Fig. 3A compares the
predicted and empirical distribution. Approximately 98% of
the data points lie along the diagonal, confirming that these
spikes are distributed normally. The remaining 2% of the

points, though, start to diverge, and at least eight points can be
considered definite outliers. What is the cause of the variability
of these outlying spikes? The waveshapes of the three most
extreme outliers are shown in Fig. 3B, superimposed on the
mean waveform for the whole cluster. A closer inspection of
the individual spike waveforms suggests that the altered shape
was caused by the presence of another cell’s spike overlapping
with the spike of the intracellularly identified neuron. The
example illustrates that for “nonbursting” cells the clusters are
approximately normal, with only a minority of the spikes as
outliers. We could not divide the spikes into two groups
(overlapping vs. nonoverlapping), most likely because the sec-
ondary cell(s) causing the spike variability may be any distance
from the identified cell. Therefore the magnitude of distortion
of any given spike may vary continuously from large values to

TABLE 1. Operator error rates

Data Set

1 2 3 4 5 6

FP FN FP FN FP FN FP FN FP FN FP FN

Operator
K 10.0 14.3 7.4 16.6 0.2 11.7 1.2 17.0 1.1 22.9 3.8 25.1
H 3.8 26.7 6.0 11.5 1.4 1.3 1.3 16.2 0.5 21.3 3.1 20.1
D 9.4 16.1 0.7 19.7 0.4 3.3 1.6 10.1 1.1 9.1 1.5 21.2
C 4.2 5.6 0.9 3.2 2.3* 67.3* 0.8 12.5
J 6.4 16.4 6.1 14.7 0.2 8.8 15.9 20.3 0.8 19.2 11.6 23.5
G 7.2 14.4 23.9 6.3 1.1 5.9 43.4 14.2 0.5 16.5 X X
R 7.3 27.0 20.3 8.5
X 31.2 1.9 5.4 9.6 0.4 23.8 8.8 25.1 0.5 20.9 2.2 19.4
2 0.7 2.9 10.0 11.1

Mean 10.86 92 16.76 8.5 9.26 8.2 11.56 5.0 0.76 0.4 7.66 7.4 11.76 15.0 16.26 5.2 0.86 0.3 17.56 5.1 4.46 4.1 21.96 2.4
Automatic system 8.0 5.9 0.2 5.3 0.0 3.5 1.4 5.9 0.2 4.0 4.3 7.5

Amplitudes (mV) and number of spikes for data sets, respectively, were 1: 50 and 1,952; 2: 76 and 2,462; 3: 117 and 690; 4 (bursting): 68 and 1,682; 5: 71
and 1,420; and 6: 59 and 1,010. Mean6 SD. FP, false positive, Type I, or commission error; FN, false negative, Type II, or omission error; X, a session where
the operator did not identify the intracellular unit. *, a session where the operator divided the spikes of a bursting cell into two clusters corresponding to early
and late spikes within the burst (excluded from mean6 SD calculation).

FIG. 1. Error rates for clustering.x axis: percentage of
operator-marked spikes that do not correspond to the iden-
tified cell (Type I or commission error).y axis: percentage
of identified spikes that were not marked by the operator
(Type II or omission error). Each plot corresponds to a
separate recording session. The last 4 sessions are the same
cell recorded under different conditions of burst mode and
amplitude. Individual human operators are identified by
letters. The performance of the AutoClass program is indi-
cated by A. The lines indicate theoretically optimal perfor-
mance, determined by a computer search for the ellipsoidal
cluster shape that minimizes a weighted average of false
positive and false negative errors. PC, principal component.
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zero. This hypothesis would explain the slow trend away from
the straight line (predicted values), instead of a distinct group
of “overlapping spikes” (Fig. 3A).

In addition to overlapping spikes, what else determines the
shape of the clusters? Possible variables include the effect of
background field and unit activity and/or variability of the
amplitude and shape of the intracellular action potential (Henze
et al. 2000; Nadasdy et al. 1998). For a normal distribution,
cluster shape is characterized by the covariance matrix. Figure
3C shows a pseudocolor image of the covariance matrix for a
cluster of intracellularly identified spikes (after outlier remov-
al). This can be compared with the predicted covariance matrix
(Fig. 3D) under the hypothesis that the variability of spike
shapes is caused purely by background field and unit activity
(seeMETHODS). The two matrices are strikingly similar, indi-
cating that for this nonbursting cell, the shape of the cluster is
determined mainly by superimposed background field and unit
activity.

EEG field and cellular synchrony.During sleep and awake
immobility, the hippocampus from time to time expresses a

form of population activity calledsharp wave burst.Sharp
waves in the stratum radiatum are associated with a coherent
200-Hz field oscillation in the pyramidal cell layer (“ripples”)
and phase-locked discharges of pyramidal cells and interneu-
rons (Buzsaki et al. 1992). In the anesthetized preparation, as
used here, the ripple frequency is lower (120 Hz on average)
and the incidence of population bursts is lower (Ylinen et al.
1995). We studied the effects of sharp wave-associated ripples
on the error rates of unit clustering. Figure 4A shows the
performance of human operators and the BEER measures (see
following text) during epochs when the spikes occurred in
association with field ripples. For this cell, the error rate
increased dramatically during ripples up to 50% for Type I and
Type II errors. The majority of the error increase was for Type
I (false positive) errors, indicating the false inclusion of other
units with the “target” unit. The minimum achievable error, as
estimated by the BEER measure, also increased significantly.
Even when all three principal components were considered, the
combined errors could exceed 20–30%, reflecting a four- to
fivefold decrease of spike isolation reliability for this cell

FIG. 2. Wave shape information is neces-
sary for accurate spike discrimination.A and
B: cluster plots showing the spikes of the
identified cell (red) and a 2nd confounding
cell with a very similar amplitude profile but
different wave shape (green). All other ex-
tracellularly detected spikes shown in blue.
When using amplitude information alone,
the 2 cells cannot be separated.C, left: mean
waveforms recorded by a linear silicon
hexatrode from a pyramidal cell in a separate
extracellular recording session. There is sub-
stantial variation of wave shape along the
somatodendritic axis, indicating that elec-
trode location is an essential determinant of
wave shape.Right: hypothesized position of
the hexatrode along the somatodendritic
axis.
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during ripple-associated population synchrony of CA1 neu-
rons. Examination of errors for all operators and data sets
indicated that in the presence of field ripples, Type I errors
increased more substantially than Type II errors (Fig. 4,C
andD).

Figure 4Billustrates the mean wave shapes of the intracel-
lularly identified cell. Although spikes detected during the
ripple were phase-locked to a highly rhythmic “ripple” EEG
background (not shown), the amplitude and waveshape of the
average filtered spikes in the presence and absence of ripples
were quite similar (Fig. 4B). However, the standard deviation
was twice as high in the case of ripples compared with their
absence. This finding indicates that digital filtering (.800 Hz)
successfully removed the ripple field effect. We therefore
conclude that the major factor contributing to errors during
sharp wave-associated ripples is the superimposition of other
synchronously firing neurons.

Complex spike bursts of single pyramidal cells.Single hip-
pocampal pyramidal cells exhibit “complex spike” bursts
(Ranck 1973), which cause variability of amplitude and wave-
form. To investigate the effects of complex spike activity on
the extracellular clusters, we simulated regular bursting dis-
charges by injection of short, strong depolarizing current steps
(0.5 nA for 40 mS; intra-burst firing frequency;200 Hz).
Figure 5Ashows the cluster diagram containing the bursting
cell (red;cell 4 in Table 1) and the averaged waveforms of the
successive extracellular and intrasomatic spikes during the
burst (Fig. 5B). The dominant effect on the cluster shape is the
change in amplitude. The cluster of the identified cell is
“stretched” compared with the clusters of other cells. The
change in cluster shape was also reflected in the covariance
matrix. Figure 5,C and D, shows a similar analysis as illus-
trated for the nonbursting cell in Fig. 3. For the bursting
neuron, the cluster shape is no longer similar to that predicted

FIG. 3. Analysis of cluster shape for a nonbursting cell.A: x2 plot for the feature vectors for a single cell in 12-dimensional
space (data set 1of Table 1). If the data are normally distributed, the Mahalanobis distance will follow ax2

12 distribution (indicated
by the red dot-dashed line). The inner 98% of the data fits this well. However the final 2% diverges, and there are 8 extreme outliers.
B: waveforms of the 3 most extreme outliers, superimposed on the mean spike waveform for this cell (gray). The outliers appear
to be caused by the overlap of a spike from the identified cell with another cell.C: pseudocolor plot of the 123 12 covariance
matrix of the cluster of identified spikes. Column and row order index by principal component number (1–3) and channel number
(1–4).D: covariance matrix predicted by the power spectrum of the noise. This is very similar to that seen inC, indicating that
for this cell, the spread of the cluster is caused mainly by superimposed background noise. Color scales forC andD: arbitrary units.
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by the background activity. Instead we see increased variance
in amplitude, and a strong correlation between the amplitudes
on all recording sites.

Postclustering tools: autocorrelograms and correlograms

It has been proposed that the neuron’s spike refractory
period, as reflected by the absence of spikes at short intervals
in the autocorrelogram, can be used as a reliable indicator of
whether the recording was made from a single cell or from
multiple neurons. Conversely, cross-correlation of two clusters
with a common refractory period is taken as an indication that
the clusters actually represent the same cell (Fee et al. 1996;
Johnston and Wu 1995).

Auto- and cross-correlograms provide valuable help during
the clustering process. However, they should be interpreted
with caution, due to the possibility of factors causing two cells
not to co-fire (such as spatially separated place fields) or the
presence of effective monosynaptic connections (Csicsvari et
al. 1998). Comparison of autocorrelograms of clustered spikes
and intracellular action potentials further helped to clarify the
situations where correlograms may be safely used. Figure 6,A
and B, illustrates the autocorrelogram of a poorly isolated
cluster (Type I error: 43.4%). The presence of spikes in the
refractory period (,2 ms) indicated the contamination of other
units. However, the height of the autocorrelogram in the central
(refractory) portion was quite small relative the large “shoul-
ders” surrounding it. Does this mean that Type I (false posi-
tive) error was negligible? To get an insight why even in the
presence of “confounding” spikes the autocorrelograms look
“normal,” we must consider the mathematical properties of
correlograms in more detail.

To simplify the discussion, we scaled they axis of the
cross-correlogram to represent the “cross-intensity function”
(Moore et al. 1970). This is achieved by dividing the number
of counts in each bin by the product of the bin length and the

total number of spikes ofcell 1.They axis can then be read in
hertz, and the value at timet interpreted as the probability of
cell 2 firing per unit time, given thatcell 1 fired a spike a time
t ago (Moore et al. 1970).

In the case of two completely unrelated spike trains, the
cross-correlogram is expected to be flat, with value in hertz
equal to the firing rate ofcell 2. Even if the cells show an
interaction (e.g., ifcell 1 drivescell 2), we expect the asymp-
totic value of the cross-correlogram at long times to be equal to
the firing rate ofcell 2. For an autocorrelogram of a single
isolated cell, we expect that the asymptotic value will be equal
to the firing rate of the cell. For an autocorrelogram of a poorly
isolated cell, the central bins in the autocorrelogram (i.e., the
refractory period) reflect the frequency of contaminating
spikes.

The heights of the autocorrelogram “shoulders,” if they
exist, are set by a different time scale. The shoulder height
reflects the probability per unit time that a spike will occur
given that another spike occurred one intra-burst interspike
interval ago. The shoulder height is therefore of the order of the
probability that a given spike participates in a burst, divided by
the variability of the intra-burst interspike intervals. Because
this variability is ,1 ms, the height of the autocorrelogram
shoulders will be orders of magnitude larger than the central
portion of the autocorrelogram, even for a poorly isolated cell.

The central portion of the autocorrelogram should therefore
not be compared with the shoulders but with the asymptotic
height at long times. For illustration purposes, we considered
simulated spike trains. Figure 6C shows an autocorrelogram
created from spikes of a mixture of two simulated bursting
cells with equal firing rates (2.5 Hz) and 3-ms refractory
periods. The refractory period (central part) of the correlogram
looks reasonable when compared with the height of the shoul-
ders. However, when the number of spikes in the refractory
period is compared with the asymptotic portion of the auto-
correlogram (Fig. 6D), it becomes clear that the spike train did

FIG. 4. Effect of cellular synchrony.A: operator error
rates and theoretical optima fordata set 1,restricted to
hippocampal sharp wave burst (ripple) periods. Both op-
erator error rates and theoretical optima increase dramat-
ically relative to epochs not containing population bursts.
B: mean and standard deviation of filtered waveforms of
identified spikes during and outside of ripple periods. The
mean waveform and amplitude are very similar but stan-
dard deviation increases. This indicates that the degraded
performance is not due to contaminating synchronous
field activity. C andD: scatter plots of overall error rates
vs. error rates restricted to sharp wave periods. False
positive errors are more seriously affected, suggesting
that the main cause of error is the firing of otherwise
silent cells.
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not derive from a single neuron. In the case of slow discharging
cells or short recordings, there may not be enough spikes in the
central portion of the autocorrelogram to allow accurate com-
parison to the asymptotic region. In these cases, the autocor-
relogram cannot be used to determine the successful elimina-
tion of Type I errors.

The cross-correlogram can also be useful for evaluating the
success of cell isolation (Fee et al. 1996). In particular, shoul-
ders of the cross-correlogram for two clusters may indicate that
both clusters contain spikes produced by the same bursting
neuron (Fig. 6,E and F). Asymmetric peaks, in particular,
indicate that the decreasing amplitude spikes of a burst have
been put into separate clusters. Asymmetric cross-correlogram
peaks may also be caused by direct coupling of two cells, but
those observed in rat hippocampus may be distinguished from
misclassified bursting cells on the basis of a characteristic
narrow single cross-correlogram peak (Csicsvari et al. 1998).
Conversely, the absence of shoulders in a cross-correlogram

may not be taken as a guarantee that the clusters do not both
contain spikes from a common nonbursting cell.

Theoretically optimal performance

Errors are caused by overlapping clouds in cluster space. Is
it possible to improve error rates by determining more appro-
priate boundaries between clusters? We addressed this question
by using an estimate of maximum possible performance,
termed the BEER (seeMETHODS). This measure gives an esti-
mate of the minimum error rates for an optimally positioned
ellipsoidal cluster, given the positions of the correct and incor-
rect spikes. Furthermore the BEER measure allows for a dif-
ferential weighing of Type I and Type II errors, parameterized
by a “conservatism” parameter. Therefore the BEER measure
specifies a curve showing the tradeoff between Type I and
Type II errors as this parameter varies from 0 to 1.

Figure 1 shows the estimated minimum possible errors,
superimposed on the performance of the human operators.

FIG. 5. Analysis of cluster shape for a bursting cell.A: cluster diagram for a data set containing an intracellularly identified
bursting cell (red;session 4in Table 1).B: superimposed mean waveforms for the 1st to 6th spikes of a burst, showing a clear
amplitude decrement.Left inset: corresponding mean intracellular waveforms.Right inset: extracellular waveforms normalized by
amplitude, showing wave shape change during burst.C: covariance matrix for the bursting cell, showing a high correlation in
amplitude across the 4 channels.D: covariance matrix as predicted by the power spectrum of the noise. For this bursting cell, the
cluster shape cannot be predicted from the noise alone, indicating that spike shape variabilility during the burst causes significant
change in cluster shape.
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Curves were generated using the peak-to-peak spike height
only, the first principal component only, the first and second
principal components, or the first three principal components.
For each calculation, two BEER curves were generated by a
cross-validation method, in which the ellipsoid position was
determined from half of the data (even or odd numbered
spikes) and evaluated on the other half. Examination of the two
sets of curves provides an estimate of the minimum achievable
error, whereas the difference between them is an indication of
the accuracy of this estimate.

As was the case with the human operators, the BEER curves
indicate a trade-off between false-positive and -negative errors.
For all data sets, there was a strong distinction between the
errors generated by the use of the peak-to-peak measures or the
first principal components only versus the use of two- and
three-principal components. This was particularly striking for
the data set in which the intracellularly identified unit had a
confounding unit with a similar amplitude distribution (Fig. 1,

cell 2,and Fig. 2). There was also a slight further improvement
by using three over two principal components but this differ-
ence was much smaller than the difference between the use of
one versus two principal components. In general, the perfor-
mance of human operators was similar to the BEER perfor-
mance when only the peak-to-peak amplitudes or one-principal
component was used. It must be noted here that the human
operators had all the principal components to work with and
could get additional information from examination of spike
waveforms and auto/cross-correlograms. Importantly, all hu-
man operators did worse than the theoretical best achieved
using all three principal components. The difference between
human operators and BEER measures was least when the
extracellular amplitude of the impaled cell was relatively large
and did not burst.

Analysis of human operator errors

To assess how performance could be improved, we analyzed
the distribution of operator errors on the most difficult neuron,
(cell 1 of Fig. 1). Figure 7 displays the correctly identified
spikes along with the false positive and negative errors made
by an operator in a single two-dimensional projection. When
the first principal component projections were displayed in the
cluster space, errors occurred in a shell surrounding the cluster
of correctly identified spikes. Furthermore more errors oc-
curred at the border with small-amplitude spikes (Fig. 7A).
Examining Fig. 7A, one could form the impression that the
clustering performance cannot be substantially improved: de-
creasing Type I errors can be achieved only by increasing Type
II errors. This impression was supported by calculating the
Mahalanobis distance in the two-dimensional space for the
correctly identified spikes, the false negative errors and false
positive errors (Fig. 7B). The correctly identified spikes oc-
curred closest to the center of the cluster, the false positive
errors closer to the periphery, and the false negative errors
were the furthest out of all (Fig. 7B). However, a different
picture arose when the third-principal components were dis-
played. These projections are rarely used by human operators
because the spikes of different cells do not form well-separated
clouds. However, displaying the third-principal components
revealed that the false positive errors occurred actually further
out than the false negative errors (Fig. 7C). Similarly when the
Mahalanobis distances were calculated in the full 12-dimen-
sional space, the false positive errors occurred farther from the
center of the cluster than the false negative errors (Fig. 7D).
This conclusion was borne out in 46 of the 48 clustering
sessions across all operators (Fig. 7E).

The preceding analysis indicated that the clusters created by
the operators were not optimal. A plausible explanation is that
human operators are able to use only two dimensions at a time.
In any two-dimensional plane, the expected amount of cluster
overlap is always more than in the full high-dimensional space.
In contrast to the human operator, the BEER estimation can use
all dimensions at once. This may explain the significantly
lower error rates of the BEER method.

Automatic cluster cutting

The previous analysis has indicated that the performance of
human operators was below the theoretical optimum, as esti-

FIG. 6. Auto- and cross-correlograms.A: autocorrelogram for a poorly
separated cell (operator G, data set 4;Type I error 43.4%).B: close-up ofA,
showing some contamination of the central refractory portion.C: autocorre-
logram for 1-h-long simulated spike train. Two cells were simulated with an
average firing rate of 2.5 Hz and a bursting pattern. Although the combined
spike train consists of 2 independent cells, it appears to have a clear refractory
period, when scaled by the burst shoulder height.D: close-up ofC, showing
that the autocorrelogram height during the refractory period is approximately
half the asymptotic height.E: cross-correlogram showing large asymmetric
peaks, indicating that 2 clusters both contain spikes from a single bursting cell
(operator C, data set 4).F: cross-correlogram for of 2 well-isolated clusters
with no systematic interaction between the 2 neurons.E andF, insets: auto-
correlograms of the individual clusters.
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mated by the BEER method, and that this may be due to an
inability of human operators to visualize the multidimensional
cluster space. It is therefore of interest whether automatic
clustering systems reduce the error rates made by the human
operators.

Several approaches to automatic spike sorting have been
proposed (Fee et al. 1996; Lewicki 1998; Sahani 1999; Wright
et al. 1998). In our investigation, we examined the applicability
of a general-purpose clustering method designed to automati-
cally classify various types of data (Cheeseman and Stutz
1996).

Figure 8Ashows the raw output produced by the program
on session 4,in which the intracellular cell was bursting.
The program generated nine clusters. However, examination
of autocorrelograms indicated that three of these clusters
(shown in red, green, and blue) corresponded to spikes from

the same cell (Fig. 8B). The clean refractory period in the
cross-correlogram for all three clusters, and the asymmetric
cross-correlograms between the red cluster and the green
and blue clusters, suggested that the latter may correspond
to correspond to subsequent spikes of the bursting cell. This
is supported by the larger amplitude of the earlier discharg-
ing (red) spikes. Examination of other auto- and cross-
correlograms (not shown) indicated that no other clusters
corresponded to the bursting cell, and that the small-ampli-
tude yellow, mauve, and pink clusters, and the diffuse gray
cluster do not correspond to single units. The final clusters
are shown in Fig. 8C.We refer to the process of automatic
cluster determination, followed by manual reassignment as
semi-automaticclustering.

The tendency of AutoClass to overcluster the data was
born out in the other five recording sessions. The output of

FIG. 7. Analysis of operator errors.A: errors made byoperator Koncell 1, shown in one of the projections used by that operator
when cluster-cutting. False positive errors (red) are located within the cluster area and false negative errors (green) outside.B:
histograms of Mahalanobis distance from the cluster center in this 2-dimensional space. As expected, false positive errors are
further toward the center than false negative errors.C: errors plotted in a projection not used by the operator. Unexpectedly, false
positive errors are now further out than false negative errors.D: histograms of Mahalanobis distance for the human operator in the
full 12-dimensional feature space. False positive errors are again further out than false negative errors.E: analysis of all clustering
sessions. In every case but 2, the mean Mahalanobis distance in the 12-dimensional space is larger for false positive than for false
negative errors. This indicates that the performance of operators is suboptimal because of their inability to visualize the full
12-dimensional space.

410 HARRIS, HENZE, CSICSVARI, HIRASE, AND BUZSA´ KI

 at U
niversitatsspital on D

ecem
ber 9, 2012

http://jn.physiology.org/
D

ow
nloaded from

 

http://jn.physiology.org/


the program was examined by an operator in each case, and
clusters deemed to have belonged to the same cells were
merged. Insession 6,the program also produced a bimodal
cluster, which was deemed to contain the spikes of two
cells. The cluster was split manually, and the distinctness of
the two subclusters was confirmed by a flat cross-correlo-
gram.

The error rates of the semi-automatic system (AutoClass
followed by manual cluster merging) are shown in the bottom
line of Table 1, and are marked by A in Fig. 1. In all six files,
the performance of the semi-automatic system was better than
that of any human operator. Furthermore in every case, the
performance of the semi-automatic system was comparable
with the theoretical optimum as estimated by the BEER mea-
sure. We therefore confirm that automatic cluster cutting, if
followed by proper postclustering examination and adjustment,
can indeed lead to lower error rates than manual spike sorting
methods.

Comparison of tetrode to single-wire performance

While tetrodes are often acknowledged to provide more
accurate spike separation in hippocampus (Drake et al. 1988;
McNaughton et al. 1983; Nadasdy et al. 1998; Recce and
O’Keefe 1989; Wilson and McNaughton 1993), and necortex
(Gray et al. 1995; Wright et al. 1998), single-wire recordings
are still often used in many studies (Deadwyler and Hampson
1995; Hampson et al. 1999; Nicolelis et al. 1997). We charac-
terized the improvement gained from tetrode recordings by
comparing optimal possible performance using only one of the
tetrode channels relative to optimal performance using all four.

Figure 9 shows the optimal performance estimate for the six
recording sessions using each channel individually compared
with optimal performance using them all together. In each plot,
the four pairs of dotted lines show estimated optimal perfor-
mance for each of the four sites, and the single pair of solid
lines shows estimated optimal performance for the full tetrode.

FIG. 9. Comparison of estimated optimal performance
with singles wires relative to optimal performance for the
full tetrode.z z z , best ellipsoid error rate (BEER) estimates
for each of the 4 channels used alone. —, the BEER
estimate for the full tetrode. In thebottom-rightplot, only
3 pairs are visible because the errors for the 4th site were
off-scale (Type I and Type II errors both.50%). Note
significantly poorer performance of even the best single
wires relative to the full tetrode.

FIG. 8. Semi-automatic cluster cutting.A: the output of the AutoClass program (Cheeseman and Stutz 1996). The 9 clusters
produced are shown in different colors.B: auto- and cross-correlograms for the spikes in the red, green, and blue clusters. The clean
refractory periods in all cross-correlograms indicate that the 3 clusters correspond to a single cell. The asymmetric cross-
correlograms between the red cluster and the other 2 suggest that it the red cluster contains the earlier spikes in the burst. Similar
analysis of the yellow, mauve, pink, and gray clusters indicated that they did not correspond to single units.C: revised clusters after
manual merging by a human operator.
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All three principal components were used (Abeles and Gold-
stein 1977).

The error estimate for single wires differed greatly from wire
to wire with the worst wires showing Type I and Type II errors
both exceeding 50% and therefore off the scale of the plots in
Fig. 9. However, even the best wires show poorer performance
than tetrodes with error rates typically double those for the full
tetrode.

D I S C U S S I O N

We used simultaneous intracellular and extracellular record-
ings to quantify errors of manual spike separation methods. To
date, no other methods have been available for an independent
and objective evaluation of any on- or off-line unit classifica-
tion methods. Because of the subjective bias and differing
degree of experience of the individual human operators, not
only the overall error rates but the types of errors inherent in
manual methods are expected to vary across different labora-
tories. For several types of investigations, multiple-unit record-
ing or contaminated single-unit recording may be adequate.
However, the analysis of emerging, cooperative activity of
single neurons (Buzsaki et al. 1992; Deadwyler and Hampson
1995; McNaughton et al. 1996; Nadasdy et al. 1999; Riehle et
al. 1997; Skaggs and McNaughton 1996; Wilson and Mc-
Naughton 1993, 1994) requires very accurate spike sorting.
Our major finding is that the causes of separation error can be
explained by overlapping clouds in cluster space due to the
spread of clusters representing single cells and to the similarity
of clusters corresponding to different cells. Specifically, we
found that1) the Type I and Type II errors of human operators
typically ranged from 0 to 30% but could exceed 50% during
periods of synchronous population cell discharges,2) neurons
with similar amplitude profiles across channels may be dis-
criminated when information about the waveforms is also
utilized,3) auto- and cross-correlograms of spikes may identify
poor clusters but cannot always estimate confounding spikes in
the clusters,4) the most important source of error is human
error, caused by the observer’s inability to visualize the full
high-dimensional cluster space.5) Using information from
single wires produced substantially more errors than tetrode
recordings.6) Spike sorting errors may be significantly re-
duced by semi-automatic clustering.

Synchronous discharge of nearby neurons increases Type I
clustering error

The most important error of biological origin occurs due to
the near simultaneous discharge of neurons in the vicinity of
the recording electrodes. This was demonstrated best by the
observation that both Type I and Type II errors increased
several-fold when spikes occurred during sharp wave-associ-
ated population bursts of CA1 neurons. We examined two
potential sources of the increased error. Hippocampal sharp
waves are associated with fast field oscillation (ripples, 100–
200 Hz) in the CA1 pyramidal layer and an increased syn-
chrony of pyramidal cells and interneurons (Buzsaki et al.
1992). These high-frequency ripple waves are often signifi-
cantly larger in amplitude than the units to be discriminated,
and therefore inadequate filtering may not perfectly separate
field events from the extracellularly recorded spike. However,

when filtered traces of spikes collected during the presence and
absence of ripples were compared, they were identical in
amplitude and shape, indicating that digital filtering success-
fully eliminated the effects of nonspike related background
fluctuations. However, in contrast to the similar mean spike
waveforms, the variability of spikes was substantially larger
during ripples than in their absence. A likely reason for this
increased variability is the random superimposition of spikes
tightly coupled to the negative peaks of ripple waves (Csicsvari
et al. 1999). If a cell fires during the spike of another neuron,
the resulting waveshape will be the combination of the two
spikes. If the added spike(s) sufficiently alters the amplitude
distribution and shape of the spike of the neuron to be clus-
tered, an omission (false negative) error will occur. Con-
versely, superimposition of smaller amplitude spikes may re-
sult in spike waveforms sufficiently similar to be incorporated
into the cluster of the larger amplitude neuron, thus increment-
ing false positive errors. We hypothesize that a major contrib-
uting factor to Type I error is the increased probability of
discharge of many nearby neurons in a narrow time window.
We have estimated that a single tetrode can monitor.100
clusterable neurons in the CA1 pyramidal layer (Henze et al.
2000). In contrast to this large number, typically,10 of these
recordable cells are routinely clustered in the awake behaving
animal. The most likely reason for the relatively low number of
recovered clusters is that the great majority of pyramidal neu-
rons are silent most of the time. However, during the popula-
tion synchrony associated with sharp waves (Buzsaki et al.
1992; Csicsvari et al. 1999) even some of the previously silent
cells may discharge. Since these silent cells do not have suf-
ficient spike counts to form recognizable cluster clouds, the
spikes they emit may be mistakenly incorporated into the
clusters of other neurons.

Although population bursts of neurons provided the most
robust examples for the demonstration of spike interference
effects, the same rules also apply to any state when nearby
neurons discharge together within the duration of the action
potential. In the hippocampus, such spike-spike interference
effects are relatively small because in the absence of sharp
wave bursts neighboring pyramidal cells (place cells) only
exceptionally represent the same part of the environment and
therefore rarely fire together (Recce and O’Keefe 1989). In
contrast, neurons in cortical columns are typically coactivated
and discharge at a high rate in response to relevant inputs
(Hubel and Wiesel 1962; Mountcastle 1957). In addition, neo-
cortical networks can also become synchronized with millisec-
ond precision either spontaneously (Abeles and Gerstein 1988;
Buzsaki and Kandel 1998) or in response to sensory inputs
(Jones and Barth 1999; Kaneko et al. 1999). Our observations
therefore indicate that separation of tetrode-recorded neocorti-
cal neurons with the currently available clustering methods are
likely to yield much larger Type I error rates than in the
hippocampal CA1 region.

Spike waveform variability of single neurons contribute to
Type II error

The original motivation of the tetrode technique was that
multiple voltage sensors can reliably locate a given neuron in
space on the basis of spike-amplitude ratios (Drake et al. 1988;
Gray et al. 1995; McNaughton et al. 1983; Recce and O’Keefe
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1989). However, research on the biophysical properties of
neurons indicates that neurons are not point sources of extra-
cellular currents underlying the action potential. Both the peri-
somatic region and the dendritic compartments actively sup-
port both the generation and propagation of action potentials
(Calvin and Hartline 1977; Kamondi et al. 1998; Llinas and
Nicholson 1971; Regehr et al. 1993; Stuart et al. 1997). Be-
cause spike activity of pyramidal cells can be recorded several
hundred micrometers from their somata (Buzsaki and Kandel
1998; Buzsaki et al. 1996; Henze et al. 2000), the extracellular
spike recorded by the extracellular recording electrode repre-
sents a summed activity of somatic and dendritic currents
(Nadasdy et al. 1998). Since the amplitude and waveform of
dendritic action potentials vary substantially as a function of
the presynaptic network activity (Kamondi et al. 1998), the
extracellular waveforms also vary along the somadendritic
axis, modulated by ongoing network behavior. Complex-spike
bursts of pyramidal cells (Ranck 1973) represent perhaps the
most extreme degree of extracellular spike amplitude and
waveform variation. Our findings revealed that these factors
can often lead to elongated clusters, which also increases the
probability of cluster overlap with spikes emitted by other
neurons. Because units with spikes of various shapes and sizes
may be inadvertently grouped into different clusters, the num-
ber of spikes emitted by a single neuron may be substantially
underestimated (omission error).

Improved error rates achieved by semi-automatic clustering

Examination of the errors made by human operators indi-
cated that their performance was below the theoretical opti-
mum and that the most likely cause of this sub-optimal per-
formance was an inability to visualize the high-dimensional
cluster space. This was confirmed by experiments with a semi-
automatic clustering process, which achieved error rates closer
to the theoretical optimum.

The semi-automatic process consisted of an automatic clas-
sification program, followed by examination and reassignment
by a human operator. While the program’s parameters needed
very little adjustment, it had a tendency to overcluster the data;
this tendency was expressed by dividing the cloud correspond-
ing to a single cell into several clusters, which was most
noticeable for bursting cells. This problem was rectified by a
human operator who manually merged clusters corresponding
to the same cell based on cluster proximity, amplitude ratios,
and cross-correlograms. In addition, the program would occa-
sionally produce a single cluster combining spikes from two
cells. This again may be corrected by manual intervention,
including examination for bimodality of clusters and subse-
quent examination of the cross-correlogram of the divided
cluster.

The usual arguments advanced so far in favor of automatic
spike sorting have been that it is considerably faster than the
manual method and free from the subjective bias and experi-
ence level of the operator. We now can add another argument:
that it may lower error rates, beyond even those of the most
experienced operator.

Superiority of tetrodes over single wires

Spike isolation methods based on multiple-site recordings
have been used extensively (McNaughton et al. 1983; Recce

and O’Keefe 1989). Nevertheless several investigators use
single wires for unit isolation mostly because of the conve-
nience of the fabrication and implantation of single wires.
Estimation of optimal spike separation errors for single sites of
our tetrode data showed great variability depending on which
site was being used. However, even the best channels still
showed relatively poor performance with typical error rates
approximately twice those of the full tetrode. We therefore
confirm that spike separation is significantly more effective
when multiple sites are used for unit recording (Drake et al.
1988; McNaughton et al. 1983; Nadasdy et al. 1998; Recce and
O’Keefe 1989).

How may spike separation be further improved?

Use of the full tetrode channels and a semi-automatic clus-
tering process improved the performance from the level
achieved by human operators to the theoretical estimate of
optimum performance provided by the BEER measure. Can
spike separation performance be further improved?

Three directions for future spike separation methods are
worth emphasizing. First, improvement of the recording hard-
ware may enhance signal-to-noise ratios and separability of
units. Silicon technology-based electrodes are especially prom-
ising because they can be standardized and optimized for
various neuron types without increasing tissue damage (Na-
dasdy et al. 1998).

Second, although semi-automatic clustering can achieve
close to the theoretical optimum performance for a given set of
feature vectors, it may be possible to lower error rates further
by improving the feature vectors themselves. Two stages are
involved in going from raw traces to feature vectors: spike
detection and feature extraction. We have seen here that use of
waveshape information (in this case by principal component
analysis) leads to improved performance over simple peak-to-
peak amplitude. However, further improvements in spike de-
tection and feature extraction may lead to more focused clus-
ters and thus lower error rates.

Third, the semi-automatic clustering process described
here still requires inspection by a human operator. This
takes time, albeit less time than manual clustering, and
raises the possibility of subjective bias. Ideally a fully
automatic clustering system would produce an output cor-
responding to single cells without the need for user inter-
vention. The AutoClass software used in this paper was
designed for automatic classification in a wide range of
domains and made no use of neuroscience knowledge, such
as refractory periods and the nature of complex-spike bursts.
The incorporation of such knowledge (Fee et al. 1996;
Sahani 1999; K. Zhang, personal communication) holds out
hope for more reliable, fully automatic spike sorting.
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