Adaptive Sleep Loss in Polygynous Pectoral Sandpipers

John A. Lesku et al.

Science 337, 1654 (2012);
DOI: 10.1126/science.1220939

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of December 18, 2012):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/337/6102/1654.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2012/08/08/science.1220939.DC1.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/337/6102/1654.full.html#related

This article cites 38 articles, 8 of which can be accessed free:
http://www.sciencemag.org/content/337/6102/1654.full.html#ref-list-1

This article has been cited by 1 articles hosted by HighWire Press; see:
http://www.sciencemag.org/content/337/6102/1654.full.html#related-urls

This article appears in the following subject collections:
Evolution
http://www.sciencemag.org/cgi/collection/evolution
modern war and recognized its futility. In the face of rapid change, the future is hard to predict. If the large sums of income from natural resources and foreign aid are applied to development during this time of relative peace, the people of Enga will have more to lose and may continue to turn away from war. However, there is a burgeoning population of discontented youths, and politics are heating up as multinationals invest billions to extract the resources of an otherwise poorly developed PNG. Perks for those in power are many. In some areas, gangs are already serving the interests of politicians (30); a new round of warfare could erupt over the politics of tangible resources. If this happens, local institutions founded on principles of kinship, respect, and restorative justice will not suffice, and the Enga may find themselves in another cycle of violence as the scale of their society increases. This was true for many societies in the past (5, 44) and is still the case for societies in similar transitions today.

References and Notes
4. R. Kelly, Warless Societies and the Origin of War (Univ. of Queensland Press, Ann Arbor, 2000). Kelly proposes that a key characteristic of war is “social substitution,” that any member of the enemy force is a legitimate target.

Adaptive Sleep Loss in Polygynous Pectoral Sandpipers

John A. Lesku,†‡ Niels C. Rattenborg,† Mihai Valcu,‡ Alexei L. Vyssotski,‡ Sylvia Kuhn,‡ Franz Kuemmeth,‡ Wolfgang Heidrich,‡ Bart Kempenaers‡‡

The functions of sleep remain elusive. Extensive evidence suggests that sleep performs restorative processes that sustain waking brain performance. An alternative view proposes that sleep simply enforces adaptive inactivity to conserve energy when activity is unproductive. Under this hypothesis, animals may evolve the ability to dispense with sleep when ecological demands favor wakefulness. Here, we show that male pectoral sandpipers (Calidris melanocephala), a polygynous Arctic breeding shorebird, are able to maintain high neurobehavioral performance despite greatly reducing their time spent sleeping during a 3-week period of intense male-male competition for access to fertile females. Males that slept the least sired the most offspring. Our results challenge the view that decreased performance is an inescapable outcome of sleep loss.

Sleep is a prominent yet enigmatic part of animal life (1). In humans, and other mammals, sleep restriction and fragmentation diminish waking neurobehavioral performance (such as attention, motivation, sensory-motor processing, and memory), often with adverse con-sequences for the individual and society (2–5). Sleep loss even impairs the performance of innate behavioral displays (6). These findings suggest that sleep performs essential restorative processes that sustain adaptive brain performance (1). An alternative view posits that sleep may be simply a state of adaptive inactivity that conserves energy when activity is not beneficial (7). This adaptive inactivity hypothesis proposes that the marked sequences for the individual and society (2–5). Sleep loss even impairs the performance of innate behavioral displays (6). These findings suggest that sleep performs essential restorative processes that sustain adaptive brain performance (1). An alternative view posits that sleep may be simply a state of adaptive inactivity that conserves energy when activity is not beneficial (7). This adaptive inactivity hypothesis proposes that the marked
variability in sleep duration observed across the animal kingdom reflects varying ecological demands for wakefulness, rather than different restorative requirements. According to this hypothesis, animals can evolve the ability to dispense with sleep when ecological demands favor wakefulness.

Sexual selection has led to the evolution of costly morphological, physiological, and behavioral traits (8). In polygynous species, in which postzygotic paternal investment in young is absent, male reproductive fitness is determined exclusively by access to fertile females. For a polygynous male to maximize his fitness, he must successfully engage in competitive displays and physical fights with other males and in courtship displays with females. Although the time available for engaging in visual displays is limited by day length at lower latitudes, it is seemingly unlimited for species that breed in the high Arctic, where the Sun never sets during the mating period. However, under these conditions the need for sleep might limit the time available for pursuing and displaying to fertile females. As such, strong sexual selection may favor an ability in males to forgo sleep without experiencing diminished neurobehavioral performance (9, 10). Such
flexibility in sleep needs could challenge the view that a fixed amount of daily sleep is needed to maintain performance.

We examined the relationship between time spent awake and reproductive output in male pectoral sandpipers (Calidris melanotos). The species is characterized by strong sexual size dimorphism (Fig. 1B and table S1) and a polygynous mating system without pair bonds. Males spend large amounts of time defending their territory against intruders and displaying to or chasing females. Male territories vary in size depending on density (fig. S1). Breeding males engage in display flights over females (Fig. 1A and audio S1) and in ground displays, a behavior that precedes copulation (Fig. 1B and movie S1). Females are very reluctant to copulate (11). Males often engage in territorial interactions, including parallel walks and physical fights with other males (Fig. 1, C and D). Males remain vigilant for intruders and females (Fig. 1E) and engage in aerial chases of females, often in direct competition (Fig. 1F). Males and females associate only temporarily for courtship and copulation; incubation and chick rearing are done exclusively by the female (12).

We studied a population of pectoral sandpipers on the Arctic tundra when females were fertile and post-fertile (incubating). We recorded the activity pattern of virtually every resident male pectoral sandpiper and a representative sample of females using a radiotelemetry-based system developed for this study (11). The system also recorded interactions between males and females. These data showed that males were more active than were females during both the fertile and post-fertile period (n = 149 individuals, P < 0.001) (Fig. 2, A to C, and table S2). Male activity declined once fertile females were no longer available (P < 0.001) and approached the level of female activity during the fertile period (Fig. 2C and table S2). The overall level of activity varied considerably across males, even when fertile females were available (Fig. 2C). In the most extreme case, a male was active >95% of the time for a period lasting 19 days.

Using a recently developed datalogger (13), we obtained combined electroencephalogram (EEG) and neck electromyogram (EMG) recordings from males on their territory (11). These recordings allowed us to determine whether inactive males actually spent more time sleeping than did active males or simply spent more time sitting quietly while awake. Sleep typically occurred in brief bouts between periods of activity (Fig. 3A). As in other birds (14, 15), wakefulness and sleep were associated with high and low EMG activity, respectively (Welch t test, t0.9 = 14.4, P < 0.001) (Fig. 3B). Indeed, the sandpipers rapidly transitioned from active wakefulness to sleep without engaging in quiet wakefulness (Fig. 3A). Consequently, inactivity and activity are valid proxies for sleep and wakefulness in this context, respectively. As suggested from the activity recordings, time spent sleeping varied considerably across males (Fig. 3C), with the shortest sleeping 2.4 hours and the longest 7.7 hours (5.2 ± 0.5, mean ± SEM, n = 11 males). The total time males spent sleeping was correlated with the number of sleep episodes [correlation coefficient (r) = 0.79, t0 = 3.9, P = 0.004], mean duration of individual sleep episodes (r = 0.59, t0 = 2.2, P = 0.057), and maximum sleep bout duration (r = 0.66, t0 = 2.6, P = 0.027) (Fig. 3D). We also examined the EEG for signs of deeper (more intense) sleep in short-sleeping males. As in mammals, avian non–rapid eye movement (REM) sleep-related EEG slow wave activity (SWA) increases as a function of the duration and intensity of prior wakefulness (16) and therefore may reflect sleep need and intensity. Despite experiencing more fragmented sleep, the males that slept the least showed the greatest SWA (r = −0.60, t0 = −2.27, P = 0.049) (Fig. 3E), suggesting that they

Fig. 3. Short, fragmented, but deeper sleep in extremely active males. (A) EEG and EMG signs of wakefulness (red) and non–REM sleep (blue) in a pectoral sandpiper. (B) EMG activity (mean ± 95% CI) was highest during wakefulness, reflecting virtually continuous movement. (C) Large variation in the amount of EEG/EMG–defined wakefulness across birds. (D) Short-sleeping males had fewer and shorter sleep episodes relative to long-sleepers. (E) SWA during non–REM sleep was greater in short-sleeping males, but SWE was not, suggesting that short-sleeping males experienced a deficit in sleep despite sleeping more deeply.
compensated, at least partially, for sleep loss by sleeping deeper. To determine whether the increase in sleep intensity compensated fully for the lost sleep, we next calculated slow wave energy (SWE; mean SWA × number of non–REM sleep epochs), a measure of cumulative non–REM sleep that accurately tracks sleep need during chronic sleep restriction (17). Short-sleeping males should show greater SWE than that of long-sleeping males if they compensated completely for sleep loss by sleeping deeper; however, we did not find an inverse correlation between sleep duration and SWE ($r = 0.22$, $t_9 = 0.70$, $P = 0.50$). Consequently, short-sleeping males still experienced a deficit in sleep.

We examined the relationship between male activity during the fertile period and the number of male-female interactions (telemetry-based) and resulting paternity (using microsatellite markers) (11). The number of different females with which a male interacted (Fig. 4A) and the total number of interactions with females (Fig. 4B) were predicted by the amount of time males were active ($n = 73$ males, $P < 0.01$ and $P = 0.017$, respectively) (table S3). Moreover, time spent active was significantly correlated with the number of females with which a male sired young ($n = 73$ males, $P = 0.004$) (Fig. 4C) and with the total number of young he sired ($P = 0.004$) (Fig. 4D).

To determine whether there are long-term costs associated with sleep restriction and fragmentation during the breeding season, we examined the return rate and reproductive success of males across years. Males rarely returned to the study site ($n = 13$ out of 640 males across 6 years). Nonetheless, the probability of return was 10% higher [confidence interval (CI) 95%: 0 to 20%] for successful males than for males that did not sire offspring (generalized linear model with binomial error, two-tailed test, $P = 0.08$), a trend opposite to that expected if short-sleeping males experienced reduced survivorship. Moreover, 58% of the returning males were successful in siring at least one offspring in the second year, compared with only 20% of other males in the population (Fisher’s exact test, $P = 0.005$). This suggests that reproductively successful males either survive better across years than do unsuccessful males or show greater fidelity to areas where they have successfully reproduced.

Reduced sleep has been described in caged white-crowned sparrows (Zonotrichia leucophrys gambelii) and Swainson’s thrush (Catharus ustulatus) exhibiting nocturnal migratory restlessness (14, 18). However, in contrast to pectoral sandpipers, which only compensated partially for sleep loss by sleeping more deeply, songbirds compensated for sleep loss at night by increasing the time spent drowsy and sleeping during each day. Furthermore, sleep loss was associated with decreased performance on certain cognitive tasks (19), and the relationship between sleep duration and reproductive output was not addressed. Similarly, in dolphins the relationship between extended periods of constant swimming with environmental awareness and reproductive success has not been determined (20, 21).

Three pieces of evidence suggest that the amount of wakefulness is under strong sexual selection. First, males were more active than were females when females were fertile. Second, the total time a male was active during the fertile period was a strong predictor of his reproductive output. Third, the relationship between activity and reproductive output is probably directly related to competition for access to fertile females because a male’s reproductive success was strongly related to the proportion of time he was observed showing territorial or courtship behavior (table S4). Moreover, male activity was also a good predictor of the total number of interactions with females, and of the total number of different females with which a male interacted.

The recent discovery of sleep-like neuronal activity occurring locally in the cortex during wakefulness in sleep-deprived rats (5) raises the possibility that the “missing” sleep occurred in a similar manner in short-sleeping male pectoral sandpipers. This is unlikely, however, because local sleep only occurred while the rats were immobile, and performance on a foraging task was impaired if local sleep occurred in the motor cortex shortly before the task. The high reproductive success of our short-sleeping males suggests that they were not similarly impaired.

Male pectoral sandpipers forgo sleep to ensure paternity, exactly as the adaptive inactivity hypothesis predicts. However, if sleep is expendable, why do some males sleep more than others when fertile females are available? Although defeated males may give up and resort to sleeping to save energy, the energy saved by sleeping instead of sitting quietly awake (22) would need to offset the potential cost of increased predation risk during sleep (23). Moreover, the increase in sleep intensity in short-sleeping males suggests that sleep serves a restorative function. In this case, long-sleeping males may lack genetic traits that enable short-sleeping males to maintain high performance on little sleep. Indeed, interindividual variation in neurobehavioral vulnerability to sleep loss was recently linked to genetic polymorphisms in humans (24). If there is a genetic basis to male-male variability in sleep duration and resulting neurobehavioral performance in pectoral sandpipers, then the persistence of the long-sleeping phenotype suggests that it may be equally suc-

![Fig. 4.](https://www.sciencemag.org/content/337/6101/1589/F1.large.jpg)
cessful over the long term. However, our limited across-season data suggests that short-sleeping males may actually perform better than do long-sleeping males over the long term, suggesting ongoing sexual selection instead. Ultimately, a greater understanding of potential short- and long-term costs of reproductive sleep loss in pectoral sandpipers may provide insight into the evolution of this extreme behavior, as well as the ongoing debate over the functions of sleep (25) and its relationship to health and longevity in humans (26, 27).

References and Notes

11. Materials and methods are available as supplementary materials on Science Online.

Mutations in the neverland Gene Turned Drosophila pachea into an Obligate Specialist Species

Michael Lang, Sophie Murat, Andrew G. Clark, Géraldine Goupil, Catherine Blais, Luciano M. Matzkin, Émilie Guitard, Takji Yoshiyama-Yanagawa, Hiroshi Kataoka, Ryusuke Niwa, René Lafont, Chantal Dauphin-Villemant, Virginie Orgogozo

Most living species exploit a limited range of resources. However, little is known about how tight associations build up during evolution between such specialist species and the hosts they use. We examined the dependence of Drosophila pachea on its single host, the senita cactus. Several amino acid changes in the Neverland oxygenase rendered D. pachea unable to transform cholesterol into 7-dehydrocholesterol (the first reaction in the steroid hormone biosynthetic pathway in insects) and thus made D. pachea dependent on the uncommon sterols of its host plant. The Neverland mutations increase survival on the cactus’ unusual sterols and are in a genomic region that faced recent positive selection. This study illustrates how relatively few genetic changes in a single gene may restrict the ecological niche of a species.

Losses of enzymatic activities are frequent during evolution (1). For example, humans lost the ability to produce nine amino acids and six vitamins, for which we rely on our diet (2). The reasons for such losses are unknown, but it is generally believed that “superfluous” metabolic activities were lost by chance during evolution (3). We examined the dependence of the fly Drosophila pachea on the senita cactus (Lophocereus schottii), a plant species endemic to the Sonoran desert (northwestern Mexico and southwestern United States). In insects, developmental transitions and egg production are regulated by the steroid hormone ecdysone (4). However, D. pachea has lost the first metabolic reaction in the ecdysone biosynthetic pathway, i.e., the ability to convert cholesterol into 7-dehydrocholesterol (7DHC) (Fig. 1A) (4–7). The senita cactus, which D. pachea requires as a host (5), does not contain common sterols and is the only plant in the Sonoran desert (7) known to produce Δ7 sterols such as lathosterol (6). D. pachea flies do not reach the adult stage if not raised on senita cactus, but supplementing standard food with senita cactus or with 7DHC fully restores D. pachea viability and fertility (5), indicating that Δ7 sterols are essential compounds required for D. pachea development and survival.

Interestingly, D. pachea appears to depend on the senita cactus solely for its sterols, as we raised D. pachea on an artificial diet supplemented with 7DHC for more than 4 years (~60 generations) with no apparent defect (8).

Conversion of cholesterol into 7DHC is catalyzed by the evolutionarily conserved Rieske-domain oxygenase Neverland (NVD) in insects and nematodes (9, 10). To investigate whether mutation(s) in nvd are responsible for D. pachea dependence on its host cactus, we sequenced the nvd coding region (8) from D. pachea and the three most closely related species—D. nasoforma, D. acaenoptera, and D. wassermani—which feed on other cacti (11) (tables S1 and S2 and fig. S1). No stop codon or insertions/deletions were found in the D. pachea sequence, but the ratio of rates of nonsynonymous substitution (dN) over synonymous substitution (dS) is significantly higher in the branch leading to D. pachea (table S3 and fig. S2). We noticed that several amino acids showing high conservation across insects and vertebrates are different in D. pachea NVD (Fig. 1, B and C).

Acknowledgments: We thank R. Barth, E. Bolund, W. Fortmeier, A. Jacot, L. Langlis, P. Loës, C. Muck, A. Mutzel, M. Oltrogge, H. Schielzeth, X. Schleuning, S. Steiger, K. Teltcher, K. Tenenou, and A. Wittenzeiller for help in the field; R. Lacanot from the U.S. Fish and Wildlife Service (Anchorage) and G. Sheehan from Barrow Arctic Science Consortium for logistic support; and four anonymous reviewers for comments. W. Fortmeier kindly made his photos available. This work was funded by the Max Planck Society. B.K. and M.V. designed the study. B.K., J.A.L., and N.C.R. conducted the surgeries and analyzed the EEG/EMG data. A.L.V. developed and provided Neurologgers. S.K. incubated eggs and genetically determined paternity. W.H. and F.K. developed the iTags. B.K., J.A.L., N.C.R., and M.V. wrote the manuscript. Data from this study can be found in the supplementary materials.

Supplementary Materials

www.sciencemag.org/cgi/content/full/science.1220939/DC1
Materials and Methods
Supplementary Text
Figs. S1 to S3
Tables S1 to S4
Materials and Methods