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During free exploration, the emergence of patterned and sequential behavioral responses to an unknown
environment reflects exploration traits and adaptation. However, the behavioral dynamics and neural
substrates underlying the exploratory behavior remain poorly understood. We developed computational
tools to quantify the exploratory behavior and performed in vivo electrophysiological recordings in a
large arena in which mice made sequential excursions into unknown territory. Occupancy entropy was
calculated to characterize the cumulative and moment-to-moment behavioral dynamics in explored
and unexplored territories. Local field potential analysis revealed that the theta activity in the dorsal hip-
pocampus (dHPC) was highly correlated with the occupancy entropy. Individual dHPC and prefrontal cor-
tex (PFC) oscillatory activities could classify various aspects of free exploration. Initiation of exploration
was accompanied by a coordinated decrease and increase in theta activity in PFC and dHPC, respectively.
Our results indicate that dHPC and PFC work synergistically in shaping free exploration by modulating
exploratory traits during emergence and visits to an unknown environment.

� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Exploration is a common behavior when individuals enter a
new environment. It underlies many cognitive functions, such as
active sensing, perception, and spatial cognition. The emergence
of exploration is driven by curiosity and motivational purposes,
such as novelty seeking, learning, and uncertainty resolving [1–
3]. Unlike exploration in maze studies using limited exploratory
space in which animals are subject to food or water constraints,
exploration under free conditions comprises the emergence of nat-
uralistic exploratory behavior in a novel environment and there-
fore permits the investigation of the neural substrates underlying
natural voluntary behavior. Previous investigations on free explo-
ration have shown that rodents display an intentional drive to
explore large unknown environments with dynamic and
sequential exploratory patterns [4]. Individuals exploring novel
environments can be active or passive explorers highlighting indi-
vidualized coping strategies or behavioral traits [5]. Previous stud-
ies have shown that forced exploration in small environments
differs significantly from free exploration in large environments.
However, few analytical tools are available to quantify this com-
plex behavior, and the brain mechanisms underlying such behavior
are less understood.

The hippocampus (HPC) regulates navigation in a given envi-
ronment. Lesion of HPC impairs the exploratory behavior of rats
[6]. In addition, prefrontal cortex (PFC) neural activity is synchro-
nized with the HPC in exploring different dimensions of the envi-
ronment, including anxiety-related measures of center vs. wall in
the open field [7] or close vs. open portions of a maze [8,9] or
location-related measures of task-learning rules [10,11]. These
studies have demonstrated the importance of coordinated oscilla-
tions in the HPC and PFC; through synchronization or coactivation,
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the two areas participate in processing different aspects during
exploration and possibly incorporate cues from other brain
regions.

Exploration is a dynamic process intermingled with habituation
[12]. The spatial–temporal pattern of exploration results from var-
ious factors, such as novelty seeking or risk avoidance [5,13]. Most
descriptions of exploration focused on the thigmotaxic division of
the test field, and exploratory patterns in a large unknown environ-
ment have few quantitative or statistical measures. In addition,
few studies related exploration to neural activities. How oscillatory
and synchronized activities in the hippocampal–prefrontal circuit
process different aspects of self-initiated free exploration is
intriguing to investigate. The hippocampal and prefrontal systems
possibly use oscillatory activities to drive exploration and perform
dynamic representations of the environment and further guide the
exploratory behavior.

In this work, we characterized free exploration by defining
occupancy entropy from the probabilistic distribution of animals’
location time series. Furthermore, wireless local field potential
(LFP) recordings were made simultaneously in the ventral HPC
(vHPC), dorsal HPC (dHPC), and PFC when the animals performed
free exploration. We aim to provide insights into the dynamic pat-
terns of exploration by developing quantitative tools and under-
stand how hippocampal and prefrontal oscillatory activities
modulate exploration.
2. Materials and methods

2.1. Animals

C57BL/6J mice were purchased from Charles River Laboratories
(Calco, Italy). Animals were housed in ventilated cages and stored
on a 12 h/12 h light–dark cycle (lights on at 7 a.m.) with temper-
ature (21.5 �C ± 1 �C) and humidity (55% ± 8%). Food and water
were available ad libitum. This study was approved by the animal
ethics committee of European Molecular Biology Laboratory
(EMBL) and the Italian Ministry of Health (541/2015-PR), and
experiments were carried out in accordance with the National
Institute of Health guide for the care and use of laboratory animals.
2.2. Electrophysiology

Mice (3–6 months old) were used for electrophysiological
recordings. The animals were anesthetized with a mixture of keta-
mine and xylazine (100 and 10 mg/kg) and placed on a heating pad
to maintain the body temperature at 35 �C. The head was fixated
on a stereotaxic with a microscope. Supplemental inhaling isofluo-
rane was provided. An incision was cut above the skull, and burr
holes were drilled at the dHPC (bregma as reference and depth
was relative to the brain surface, 1.9 mm posterior, 1.4 mm lateral,
and 1.35 mm depth), the vHPC (3.1 mm posterior, 3.2 mm lateral,
and 3.9 mm depth), and the PFC (1.8 mm anterior, 0.5 mm lateral,
and 1.5 mm depth). Tungsten wire electrodes (Advent Research
Materials, Oxford, UK) were advanced into the brain at the above
locations. Two additional miniature screws were anchored on the
posterior and anterior portions of the skull as ground and refer-
ence, respectively. The electrode wires were inserted into a 7-pin
connector, which served as an interface for neurologger recording.
Dental cement was carefully applied over the skull to form a head
stage that protects the electrodes and wires. After surgery, the ani-
mals were housed individually and allowed at least 1 week to
recover. Before the recordings, the animals were habituated to
the installing of the neurologger for 3 d using a dummy neurolog-
ger with a similar weight and shape. LFP signals were collected
using a wireless neurologger system [14]. The sampling frequency
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for the LFP signals was 1600 Hz. After the recordings, electrolytic
lesions were made and the brains were dissected.

2.3. Emergence test and behavioral tracking

To study the exploration behavior under naturalistic conditions
similar to those encountered by animals in nature, we established
a large arena connected to a home shelter, allowing animals to
explore freely by their own intentions. Details of the experimental
apparatus are described in Ref. [15]. The arena consisted of a circu-
lar open field with a wall covered by an opaque curtain. The arena
was approximately 1.8 m in diameter and 12 cm in wall height. An
overhead camera was mounted on the ceiling to monitor the
exploratory behavior. The arena was connected to a home cage
through a small opening. The arena and the home were separated
by a removable shutter. The home cage contains a portion of the
bedding from the home cage where the animal usually lived. This
home cage served as a habitat when the animal made excursions
into the arena and returned from it. The experiment started by
transferring a mouse into the experiment room. The neurologger
recording chip was inserted into the pins on the head stage of
the animal. Then, diazepam (DZP, 1 mg/kg) or vehicle (VEH) was
treated through intraperitoneal injection. The mouse was then
placed into the home cage of the emergence test. The mouse stayed
in the home for 15 min, and the removable shutter was opened
afterward. The experiment continued for 80 min. The behavior
was tracked using Viwer2 software (Biobserve, St. Augustin, Ger-
many). The video frame rate was 25 Hz. The video tracking and
the neurologger recording were synchronized through the built-
in infrared receiver on the neurologger. The behavioral tracking
data were analyzed using the SEE package. SEE software separates
the tracking data into the wall and the center [16,17].

The animals visited the arena and returned to the home cage
frequently, and each round trip was referred to as an excursion.
Considering that the animals spent a large portion of time around
the home opening, we fitted the total 80 min positional data with a
two-dimensional Gaussian distribution and defined the area cover-
ing 95% of the probability density mass from the home cage as the
garden area. The group of explorer mice, which emerged from the
home cage and explored the arena, comprised four animals from
the DZP group and four animals from the VEH group. The group
of home-only mice, which stayed in the home only and did not
enter the arena, comprised four animals from the DZP group and
eight animals from the VEH group.

2.4. Spectral and time–frequency analysis

The LFPs were analyzed by multi-taper analysis using the
Chronux package [18]. Data were downsampled to 400 Hz, and
the 50 Hz line was removed using a notch filter. The whole dura-
tion of LFP data was subjected to time–frequency analysis to
extract different frequency bands. The moving window length
was 2 s, with step 0.04 s. The tapers and time–frequency band-
width were set as params.tapers = (3, 5). Zeros were padded at
the two ends of the data with the length of half size of the moving
window. This step produced a time–frequency transformed power
or coherence with the same temporal length as the behavioral
tracking data (80 min data at 25 Hz having 120,000 data points).
The frequency band was divided into delta (1–4 Hz), theta (4–
12 Hz), beta (15–25 Hz), and gamma (30–80 Hz) bands, and the
average was taken within each band.

The LFP was extracted at four speed ranges: 0–5, 5–10, 10–15,
and 15–20 cm/s. The analysis was confined to the excursion trips
while the animals performed exploration in the arena. Speeds less
than 20 cm/s covered 84.7% ± 5.9% (mean ± standard deviation
(SD)) of all traveling speeds in all mice. The average speed was
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6.3 ± 2.8 (mean ± SD) cm/s. Immobility at speed equal to 0 was
excluded in the LFP analysis. For the analysis of LFP power across
time windows, the power was averaged across excursions, and
all excursions were combined across the animals. On average, for
each animal, 2–8 excursions were included in the VEH group and
9–17 excursions were included in the DZP-treated group during a
given 10 min time window.

2.5. Occupancy entropy

We defined and calculated occupancy entropy from the ani-
mal’s positional time series in a large environment to quantify
the exploratory dynamics. The arena was divided into 100 by
100 spatial bins covering the circular arena. Each bin represents
a state of location. For a given spatial bin, we calculated the visits
to this bin as cumulative occupancy across time. If the animal
stayed in a bin for consecutive times, the number of visits
increased with time. The number of visits to the i-th bin up to time
t was calculated as

Cc i; tð Þ ¼
Xt

s¼0

dxs2bi
; ð1Þ

where d is an indicator function, whose value is 1 if the condition is
true. xs is the position of the animal at time s. bi is the area of the i-
th spatial bin. During time 0 – t, the access probability of the i-th bin
over the spatial bins is

Oc i; tð Þ ¼ Cc i; tð Þ
RjCc j; tð Þ : ð2Þ

The cumulative occupancy entropy was defined by the proba-
bility over the spatial bins and calculated as

Ec tð Þ ¼ �
X

i

Oc i; tð Þlog2Oc i; tð Þ: ð3Þ

To measure the exploration behavior in a short time period, we
counted the number of visits to spatial bins in a time window of
length l

Cl i; tð Þ ¼
Xl=2

s¼�l=2

dxtþs2bi : ð4Þ

The local occupancy probability was given by

Ol i; tð Þ ¼ Cl i; tð ÞP
jCl j; tð Þ ; ð5Þ

and the corresponding local occupancy entropy was

El tð Þ ¼ �
X

i

Ol i; tð Þlog2Ol i; tð Þ: ð6Þ

Following the convention, 0log20 is defined as 0 when calculat-
ing entropy. The occupancy entropy reaches the minimal value 0
when the occupancy is a Dirac delta distribution, i.e., the probabil-
ity density concentrates in one spatial bin. The maximal occupancy
entropy is achieved by the uniform occupancy over the spatial bins,
and the value is log2(100 � 100) = 13.29. For the calculation of local
entropy, the moving window length was 30 s. The cross-correlation
values between the local entropy and the theta power were taken
as the average in the range of �5 to 5 s.

2.6. Analysis of explored and unexplored areas

During exploration, the prior unknown arena is gradually
becoming familiar. We quantified the area that had already been
explored and that was previously unexplored, i.e., the newly
explored area, in the current excursion. We divided the area into
2240
40� 40 bins, and the bin size was 5 cm� 5 cm. This bin size should
cover the size of the body area and be comparable to the size of the
mouse. The explored areas of the excursion were defined as those
bins that were visited in previous excursions. The unexplored areas
of the excursion were defined as the bins that were never visited in
previous excursions. Then, we labeled the behavior time series cor-
responding to the exploratory path as explored or unexplored
according to whether it fell into the explored or unexplored bins.

2.7. Classification using a decision tree

We used vHPC, dHPC, and PFC power and coherence from four
frequency bands as features to classify the exploratory categories
of wall vs. center, explored vs. unexplored, and in vs. out of the gar-
den. Decision tree models were built to classify the three behav-
ioral paradigms [19]. The use of decision tree models was
motivated by their ability to capture nonlinear relationships and
their Whitebox model approach [19]. The feature matrix consisted
of 24 power and coherence features from 4 frequency bands of
theta, delta, beta, and gamma from the 3 brain areas. For each clas-
sification task, a binary label was created based on mouse behav-
ior, and equal amounts of data for two classes were selected. To
evaluate the classification performance of each decision tree, we
used a randomly selected training set consisting of 60% of our total
feature matrix and a testing set consisting of 40% previously unse-
lected labels. Final classification accuracy was determined by aver-
aging the performance of decision trees based on this hold-out
validation method for 100 iterations. Decision trees were trained
using MATLAB’s fitctree function. The maximum number of splits
of tree models was set to 5000 to limit the complexity of our mod-
els, and split predictors were selected via the interaction test
method to increase the detection of interactions between impor-
tant predictors. The predictor importance of features was esti-
mated using the predictor importance function of MATLAB. The
function computes the summation of the changes in the mean
squared error because of splits on every predictor and divides this
by the total number of branch nodes. The changes in mean squared
error are estimated by multiplying the Gini impurity by the node
probability. Our tree models were grown without surrogate splits;
hence, this sum was taken over the optimum splits found at each
branch node. Gini impurity measures the probability that a ran-
domly chosen element in our label vector will be misclassified if
it is classified based on the distribution of the categories in our
label vector. It is computed by multiplying the probability of
choosing that element by the probability of misclassification [20].

2.8. Statistics

The overall mean was taken over the number of excursions
from all mice to analyze the drug effects on entropy or power.
Analysis of variance (ANOVA) was used, followed by a post-hoc
test. Paired t-test was used to analyze power or coherence changes
before and after garden transitions. For the theta power compar-
ison between explorer mice and the home-only mice, the mean
was taken over the number of mice. Repeated-measures ANOVA
was used to evaluate the power changes after shutter opening.
3. Results

3.1. Characterization of exploratory activity in free exploration

A naturalistic setup (Fig. S1a online) consisting of a home base
and a large exploration field was established to allow the animals
to perform free exploration of an external environment similar to
their ecological settings [4]. This setup was used to investigate
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the spontaneous exploratory behavior of individual mice and mea-
sure the exploration in the open arena for a long period (Fig. S1b
online). Mice started in the home and a movable shutter between
the arena wall and the home was removed after a period of habit-
uation (Fig. S1b online). Naturally, the mice left the small opening
on the arena wall and displayed a willingness to explore the arena
[21]. The exploration behavior started with leaving the home and
traveling along the arena wall near the home and then followed
by the gradual buildup of exploration with more occupation of
the arena (Fig. 1a). This phenomenon is reflected by the patterned
exploration path and angular spread in four successive 20 min
intervals out of the total 80 min exploration (Fig. 1b).

As shown in Fig. 1a, the mice preferred to explore along the wall
near the home, and they visited more locations as time was pro-
longed. To quantify the overall exploratory pattern over time, we
defined cumulative occupancy entropy by determining the entropy
of the occupancy distribution (see methods). Cumulative occu-
pancy entropy measures how the visiting locations are distributed
as exploration time progressed. Low cumulative occupancy
entropy indicates the concentrated visits to some locations,
whereas the maximal occupancy entropy corresponds to the same
number of visits to all locations. After over 80 min, the cumulative
occupancy entropy showed a gradient increase (Fig. 1c), demon-
strating that the mice gradually explored the arena with small-
scale concentrated visits evolving into regular distributed visits
in the arena.

To quantify the exploratory patterns on a moment-by-moment
basis, we defined local occupancy entropy by computing the occu-
pancy distribution of exploration locations in a local time window
centered at the current time (Fig. 1d). A high local occupancy
entropy value indicates the exploration behavior that covers an
area uniformly, while zero local occupancy entropy indicates
immobility or returning to the home base in a given short time.
The local occupancy entropy showed fluctuations, capturing the
time-dependent changes of exploratory extent. The peak values
of local occupancy entropy had an increasing trend, indicating an
increasing exploratory motivation. The local occupancy entropy
value dropped to zero from time to time, characterizing the
moments when the animal returned to the home base or remained
immobile.

3.2. Characterization of altered exploration patterns with behavioral
perturbations

To confirm whether or not our entropy measurements can cap-
ture different exploration patterns, we perturbed the exploratory
behavior of the animals. We treated the animals with DZP, a previ-
ously validated drug that causes behavioral changes in the free
exploration test [15]. We computed the average entropy of all
excursions in the DZP-treated group and in the VEH-treated group.
As the test time was prolonged, the cumulative entropy in both
groups gradually increased over time (Fig. 1e). A significant
treatment-by-time interaction was observed after over 80 min
(drug by time: F(7, 527) = 16.67, P < 0.000001), demonstrating that
the cumulative entropy in the two groups had different patterns
at different times. During 0–30 min, the cumulative entropy in
the DZP group was higher than that in the VEH group; during
30–70 min, the cumulative entropy was not different between
the two groups (Fig. 1e). The increase in the cumulative entropy
during the initial stage indicates that the drug treatment enabled
the animals to make early exploratory visits to the arena with
strong motivation.

We next examined how the drug perturbation affected the local
occupancy entropy. The local entropy also increased with time in
both groups (F(7, 527) = 8.26, P < 0.00001). Between the two groups,
the local entropy was different (F(7, 527) = 60.16, P < 0.000001), con-
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firming that local entropy could capture the moment-to-moment
exploration changes by the drug perturbation. A significant
treatment-by-time interaction was also observed for the local
entropy (F(7, 527) = 3.17, P = 0.003). The local entropy in the DZP
group decreased after 20–30 and 40–70 min (Fig. 1f), indicating
that local exploration was less random. Compared with the VEH
group, the DZP group made more frequent visits to the arena with
reduced time spent in the home between two successive excur-
sions in the arena (Fig. 1g). The decrease in local entropy at a later
time during the exploration indicated that local exploration
occurred in a regular route instead of a distributed route under
the drug treatment.

3.3. Exploration in the explored areas vs. unexplored areas

Navigation in unexplored areas forms the basis to establish spa-
tial memory [22,23] and reflects learning and coping strategies in
finding rewards and expecting dangerous threats [24]. A small
open field setup cannot disclose the exploration patterns in
unknown areas because animals in a small space occupy the entire
arena quickly. We therefore aim to understand the exploratory
dynamics in the areas not previously visited by the animals. We
defined the unexplored areas as those the animals had just visited
for the first time during the current excursion and the explored
areas as those the animals had already visited in previous excur-
sions (Fig. 2a). As the mice made more excursions in the arena,
the proportion of the traveling path in the unexplored areas
decreased and the proportion in the explored areas increased
(Fig. 2b). This result demonstrates that the mice became more
familiar with the environment in a buildup fashion. The overall
proportion of the explored and unexplored areas after over
80 min was different between the DZP and VEH groups (Fig. 2c),
demonstrating that drug perturbation can influence the explo-
ration in the two areas.

Next, we examined the entropy measurements in the explored
and unexplored areas. In the explored areas, the local entropy
showed different patterns over time between the VEH and DZP
groups (Fig. 2d). During the first 20 min, the local entropy in the
explored areas was not different between the two groups. During
the 20–80 min period, the local entropy decreased in the DZP
group compared with the VEH group. In the unexplored areas,
the local entropy did not significantly differ between the VEH
and DZP groups, indicating that the exploration patterns were
unaffected by the drug perturbation. These data demonstrate that
exploration in explored and unexplored territories can reveal the
differential patterns of perturbed exploratory dynamics.

3.4. Modulation of exploration by dHPC theta power

To understand the neural activity changes during free explo-
ration, we implanted microwire electrodes in the dHPC, the vHPC,
and the PFC for LFP recordings (Fig. S2a, b online) by using a wire-
less neurologger system [25]. The wireless neurologger was well
suited for our large-arena settings in which the mice frequently
transited through the small opening in the wall between the arena
and the home. The LFPs were subjected to multi-taper time–fre-
quency analysis to examine theta band (4–12 Hz) oscillatory activ-
ities (Fig. S2c and Fig. S3a online). The dHPC theta power gradually
increased with time during the emergence test period (Fig. 3a). The
pattern was consistent for different speed ranges. The theta power
in the vHPC and the PFC did increase with time (Fig. S3b, c online).
To understand the relationship between the exploration pattern
and the theta activity, we computed the cross-correlation from
the time series between the local entropy and theta power from
the three brain areas. The cross-correlation between the dHPC
power and the local entropy (dHPC–LE) showed a prominent peak,
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Fig. 1. Characterization of exploration behavior in a naturalistic arena setup. (a) Representative exploration behavior in the arena. In the first 20 min, the mice started leaving
the home shelter and explored near the opening area. In the subsequent 20-min intervals, the exploration gradually expanded into the full circle around the wall and the
center of the arena. (b) The angular position of the mouse represented by the angles away from the home shelter, using the arena center as the central point. Positive angles
represent clockwise exploration, and negative angles represent counter-clockwise exploration. (c) Example of cumulative occupancy entropy (CE) describing the exploration
behavior during an 80-min test. (d) Example of local occupancy entropy (LE) of exploration showing the local coverage in the arena. (e) Perturbation of the exploration by
diazepam quantified by CE in 20 min time bins. ANOVA, Drug: F(7, 527) = 102, P < 0.000001. (f) Perturbation of the exploration by diazepam quantified by LE. ANOVA:
F(7, 527) = 8.26, P < 0.00001. (g) Duration of time spent in the home between successive excursions in the arena under the treatment of vehicle or diazepam. ANOVA, Drug:
F(1, 802) = 55.58, P < 0.0001. * P < 0.05, ** P < 0.01, *** P < 0.001, VEH vs. DZP, Bonferroni correction. The data are shown as mean ± standard error of the mean (SEM).
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Fig. 2. Characterization of explored and unexplored areas and selective effects of diazepam on explored areas. (a) Definition of explored and unexplored areas during each
excursion in the arena. Successive excursions were shown from panel I to XII. (b) Example showing the development of explored/ unexplored proportion for the total
excursions. (c) Distribution of explored and unexplored areas in the two groups, v2(10) = 25.56, P = 0.004. (d) Development of the LE in the explored areas in 20 min bins.
Significant effect of diazepam was found. ANOVA, time: F(1, 537) = 7.49, P < 0.0001, drug: F(1, 537) = 1.71, P = 0.19, time by drug: F(1, 537) = 4.9, P < 0.001. (e) Development of the
local entropy in unexplored areas in 20 min bins. No effect of diazepam was found. ANOVA, time: F(1, 224) = 28.65, P < 0.0001, drug: F(1, 224) = 42.13, P < 0.0001, time by drug:
F(1, 224) = 1.04, P = 0.38. *** P < 0.001, VEH vs. DZP, Bonferroni correction. The data are shown as mean ± standard error of the mean (SEM).
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in contrast to vHPC–LE and PFC–LE correlations (Fig. 3b). The
length of the local window used for the calculation of the local
entropy did not affect the magnitude of correlation (Fig. S4a
online; F(5, 90) = 0.6993, P = 0.63). We observed a reliable and tight
temporal relationship as the peak time for the dHPC–LE cross-
correlation could closely follow the local window shift (Fig. S4b
online). dHPC had a stronger correlation with the local exploration
2243
than the other brain areas of vHPC and PFC (Fig. 3c). Strong corre-
lations were also present in the DZP group (Fig. 3d). We also calcu-
lated the dHPC–LE correlation in different speed ranges from 0 to
20 cm/s in the 5 cm/s bin. We did not observe a speed effect on
the dHPC–LE correlation (VEH: P = 0.51, F(3, 36) = 0.78; DZP:
P = 0.52, F(3, 36) = 0.77), indicating that speed does not confound
the correlation between the local entropy and the dHPC power



Fig. 3. Modulation of local occupancy entropy by dHPC theta power. (a) dHPC theta power changes with time in the emergence test for different speed ranges. The theta
power was averaged across excursions combined from all the animals. Speed 0–5 cm/s, ANOVA, time: F(7, 110) = 3.485, P = 0.0021, speed 5–10 cm/s, time: F(7, 108) = 2.562,
P = 0.0176, speed 10–15 cm/s, time: F(7, 101) = 3.063, P = 0.0058, speed 15–20 cm/s, time: F(7, 85) = 1.940, P = 0.073. Bonferroni correction time 0–10 mins vs. other time points.
(b) Example of cross-correlation analysis between local entropy and theta power in the areas of vHPC, dHPC, and PFC. The time lag was in the range of �80 to 80 s. The local
window size was 30 s. (c, d) Comparison of cross-correlation strength between the theta power in the three brain areas and the local entropy showing the highest cross-
correlation between dHPC power and local entropy. Cross-correlation values were calculated as the average in the range of �5 to 5 s. (c) VEH group. ANOVA, brain area: F(2,
36) = 71.43, P < 0.0001; (d) DZP group. ANOVA, brain area F(2, 36) = 18.09, P < 0.0001. Bonferroni correction dHPC vs. other brain areas. (e, f) Cross-correlation between local
entropy and theta power at different speed ranges. (e) VEH group. ANOVA, P = 0.51, F(3, 36) = 0.78; (f) DZP group. ANOVA, P = 0.52, F(3, 36) = 0.77. * P < 0.05, ** P < 0.01,
***P < 0.001, dHPC vs. other brain areas, Bonferroni correction. The data are shown as mean ± standard error of the mean (SEM).
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(Fig. 3e, f). The strong correlation suggests that dHPC theta power
is an indicator of local exploration behavior.

3.5. PFC–dHPC coherence signals garden exit and return

After the mice left the home, the mice spent a considerable
amount of time in the area around the opening, and this area
was referred to as a ‘‘garden” [21]. Previous studies have reported
that leaving the garden may reflect a key decision state for the
mice to explore the arena [15]. We then tested whether or not LFPs
change during transitions between the garden area and the area
out of the garden. To quantitatively characterize the garden area,
we fitted the dwell time for 80 min by using a two-dimensional
Gaussian distribution. The garden area was then defined as the
95% confidence levels from the cumulative distribution (Fig. S6a
online). We extracted the behavioral epochs when the animals left
the garden and the epochs when the animals returned to the gar-
den from the outside area (Fig. 4a). LFP power and coherence were
analyzed during the garden transitions. The coherence between the
PFC and dHPC increased after the mice left the garden (Fig. 4b).
Correspondingly, the PFC–dHPC coherence decreased after the
mice returned to the garden (Fig. 4c). Coherence under the DZP
treatment showed the same patterns during garden transitions
(Fig. 4b, c), and the coherence values in the two groups were not
different (Fig. 4d). In addition, PFC–dHPC coherence was not differ-
ent at different speed ranges (Fig. S6e online). These data revealed
that PFC–dHPC coherence signaled the transitions when the ani-
mals decided to leave and enter the garden area.

The theta power in the dHPC increased when the mice left the
garden and decreased when the mice entered the garden
(Fig. 4e). However, the changes in power during garden transitions
could not be segregated from the changes in speed because out-
ward and inbound travels were associated with acceleration and
deceleration, respectively (Fig. S6d online). Power in the DZP group
differed from that in the VEH group, reflecting that the drug
affected the theta activity (Fig. S5 online). PFC or vHPC power did
not show changes during in/out garden transitions (Fig. S6b, c
online). The fact that the dHPC power shows a similar pattern to
the PFC–dHPC coherence indicates that theta power changes might
have confounding effects with coherence.

3.6. Prediction of multiple exploratory dimensions by dHPC and PFC
power

The occupancy entropy correlated with the dHPC oscillatory
activity and synchronization between the PFC and the dHPC sig-
naled the transitional exploration in the garden area. Thus, we
tested whether or not individual and correlated oscillatory neural
activities between these brain areas can predict various aspects
of exploration. We performed machine learning classification of
oscillatory features in explored vs. unexplored areas (Fig. 5a), in
vs. out of the garden areas (Fig. S6a online), and wall vs. center
areas (Fig. S7a online). These categories were regarded to indicate
different behavioral dimensions because the wall/center areas are
frequently used to indicate levels of anxiety, the explored/unex-
plored areas we defined involved novel and unknown spatial pro-
cessing, and in/out the garden areas involved decision making.

We performed the classification using a combination of power
and coherence measurements from four frequency bands out of
the dHPC, vHPC, and PFC. In total, 24 features were obtained, which
were then used to train the classifier and to classify the three
exploratory categories. These predictors could classify three cate-
gories reliably with high accuracy (Fig. 5a and Fig. S7b online).
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When the features of power and coherence were separately used
for the classification, we found that power outperformed coher-
ence (Fig. 5b). These data indicate that oscillatory activities from
individual brain areas could adequately represent the three behav-
ior categories.

We estimated the predictor importance for different frequency
bands from all the brain areas. Consistent with the better perfor-
mance using the power predictors, the predictor importance for
power was consistently higher than that for coherence (Fig. S7c
online). In the classification of wall and center, the two most
important power features with the highest values were dHPC
gamma and PFC gamma (Fig. 5c). In the classification of in and
out of the garden, the two most important features were dHPC
theta and dHPC gamma (Fig. 5c). In the classification of explored
and unexplored areas (Fig. 5c), the two most important features
were PFC delta and dHPC theta. We then performed classification
separately in the VEH and DZP groups. In both groups, these 24 fea-
tures could perform classifications accurately (Fig. 5d). Predictors
with the highest prediction importance were also from the dHPC
and PFC (Fig. S7d online). These data reveal that individual oscilla-
tory activities in the dHPC and the PFC could predict different
exploratory patterns, and they had better representations than
the cross-area synchronized oscillations.

3.7. Initiation of exploration is modulated by dHPC and PFC power

The onset of exploration behavior in the arena is determined by
the internal exploratory volition and drive. During the 80 min
experiment, some animals stayed in the home for the entire dura-
tion with minimal exploratory activity, i.e., around the opening
only. This exploration variability reflects the behavioral traits and
different modes of processing on initializing exploration. To under-
stand the neural activities that modulate the internal exploratory
motivation prior to the emergence of exploration, we examined
the theta activities during the baseline period before the shutter
opening in the mice that exhibited exploration behavior (explorer
group) and in those that only stayed in the home and never entered
the arena during the entire test time (home-only group). During
the initial 15 min after the shutter opening, the explorer animals
mostly spent time in the home with minimal excursion in the
arena.

In the PFC, we observed different theta activity patterns after
the shutter opening between the explorer mice and the home-
only mice (group-by-time interaction: F(5, 50) = 4.07, P = 0.0036;
Fig. 6a). The theta power decreased after the shutter opening in
the explorer mice, and the power remained unchanged in the
home-only mice. In the DZP treatment group, the explorer and
home-only mice decreased in theta power (Fig. 6b), although no
effect of group-by-time interaction was found. These results indi-
cate that initiation of exploration is associated with decreased
theta power in the PFC. In the dHPC, the theta power changes over
time in the explorer mice were different from those in the home-
only mice (group-by-time interaction: F(5, 50) = 5.868, P = 0.0002;
Fig. 6c) after the shutter opening. The explorer mice showed an
increase in theta power, and the home-only mice did not show
changes in theta power. In the DZP group, the same pattern was
found (group-by-time interaction: F(5, 30) = 6.78, P = 0.0002;
Fig. 6d). These data show that initiation of the exploration is asso-
ciated with increased theta power in the dHPC. Therefore, an
exploration into unknown territory is modulated by the coordina-
tion of PFC and HPC oscillations with the two areas working syner-
gistically to determine the emergence of the exploration and the
individual variabilities.



Fig. 4. PFC–dHPC synchronization signals the in/out garden transition. (a) Example showing that the mice transit from the garden area into the arena (in ? out the garden)
and from the outside-garden area into the garden (out? in the garden). The garden area is marked by a curved line around the home. Blue box represents home connected to
the arena through small opening on the arena wall. Green � represents the arena center. (b, c) Time-dependent coherence between dHPC and PFC during the transition of in/
out garden. Top row, VEH group. Bottom row, time DZP group. (b) in ? out transition. (c) out ? in transition. (d) Averaged theta band (4–12 Hz) coherence before and after
garden transition. Left, in ? out transition, paired t-test, DZP, t(143) = 2.8, P = 0.0058; VEH t(125) = 3.46, P < 0.0001. Right, out ? in transition: paired t-test, DZP t(139) = 5.86,
P < 0.0001; VEH t(128) = 3.23, P = 0.0016. (e) dHPC theta power during in/out garden transitions. In? out: paired t-test, DZP t(143) = 9.9, P < 0.00001; VEH t(125) = 2.9, P = 0.0045.
Out ? in: paired t-test, DZP t(139) = 10.05, P < 0.00001; VEH t(128) = 7.24, P < 0.00001. The data of shaded areas are shown as mean ± standard error of the mean (SEM).
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Fig. 5. Classification of multiple exploration categories using individual dHPC and PFC oscillatory activities. (a) Successful classification of wall vs. center, in vs. out of the
garden, and explored vs. unexplored areas using 24 oscillatory features extracted from four frequency bands out of the three brain areas. (b) Classification performance using
individual (power, 12 features) and synchronized (coherence, 12 features) oscillations. (c) Predictor importance estimations for each oscillatory feature using the power under
three exploration categories. (d) Classification of exploration categories in VEH and DZP group separately. The data are shown as mean ± standard deviation (SD).

W. Dong et al. Science Bulletin 66 (2021) 2238–2250

2247



Fig. 6. Modulation of exploration initiation by coordinated PFC and dHPC theta oscillations. (a, b) Lowered PFC theta power in mice showing active exploration, whereas PFC
power was not changed in mice that stayed in the home only after shutter opening. The power was normalized by the data in the first 5 min in the home. (a) VEH group; (b)
DZP group. (c, d) Enhanced dHPC power in the mice showing active exploration, whereas dHPC power was not changed in the mice that stayed in the home only after shutter
opening. (c) VEH group. (d) DZP group. * P < 0.05, ** P < 0.01, *** P < 0.001, �5 to 0 min compared with other times, Fisher’s LSD. The data are shown as mean ± standard error
of the mean (SEM).
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4. Discussion

4.1. Dynamics of exploration

The naturalistic setup consisting of a large arena and a home
base allowed observations of sequential excursions in an unknown
territory, a similar pattern observed in other animals [26–29]. We
provided computational methods to quantify the complexity and
extent of the exploration in unknown environments. In order to
characterize the extent of the exploratory dynamics, we defined
the cumulative occupancy entropy to understand the accumulating
exploratory pattern and the local occupancy entropy to quantify
the exploration in a short time. Both entropy measurements
revealed a trend of increased exploration over time, demonstrating
that exploration shows a buildup pattern. The cumulative entropy
showed increased occupancy of the arena when the exploration
was perturbed by DZP during the early exploration stage. The local
entropy showed a decreased occupancy with a concentrated distri-
bution during the later exploration stage. Thus, the two entropy
tools can disclose selective changes in the exploratory dynamics
when the exploration behavior is under pharmacological
perturbation.

We further defined the explored and unexplored areas during
each excursion in the arena. The choice of explored path reflects
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that navigational preference is built upon prior experience that
has been established during previous excursions. The choice of
unexplored path reflects an incremental expansion of familiar
areas into unknown areas. Our analyses showed that the propor-
tion of unexplored areas decreased with time, indicating an
increased familiarity. The local entropy in unexplored areas
increased with time regardless of drug treatment, demonstrating
a continued active exploratory capacity to cover more unknown
areas.
4.2. dHPC and PFC oscillatory activities in exploration

Our findings reveal a prominent correlation between the dHPC
theta activity and the occupancy entropy. dHPC theta activity has
been found in spatial navigation [11,30–32] and contextual mem-
ory [33,34]. In traveling between the garden area, an area near the
home, and the outside area, we found that dHPC–PFC synchroniza-
tion signaled the transitions. The increased theta coherence
demonstrated that spatial processing in the outside space was
accompanied by increased synchrony between the PFC and dHPC.
We performed machine learning classifications using LFP power
and coherence features on a range of behavioral dimensions,
including wall/center, in/out of the garden, and explored/unex-
plored territories. Results indicated that power predictors outper-
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formed coherence predictors, demonstrating that LFP power itself
possesses good representation properties. Unlike spike data, LFP
signals reflect an ensemble of neuronal, dendritic, and synaptic
activities in the local neuronal neighborhood, and slow waves of
LFP may be influenced by volume conduction [35]. Nonetheless,
we found that dHPC and PFC oscillatory features can sufficiently
serve as important predictors in classifying various aspects of the
exploratory behavior.
4.3. Individuality on free exploration

The emergence of active exploration in the unknown territory
vs. reluctance to enter the arena and the preference of homestay
reflect the individuality in exploration. In a large enriched environ-
ment, genetically identical inbred mice show diverged exploratory
patterns of location landmarks over time, marking the emergence
of individuality in exploration [36]. Exploratory activity correlates
with adult hippocampal neurogenesis [37], a developmental pro-
cess responsible for shaping the neural circuit. Our findings of
comodulation of exploratory initialization by the PFC and dHPC
suggest that individualized preference is a reflection of neural plas-
ticity and may be controlled at the level of the neural circuit.

dHPC–PFC synchronization facilitates neuronal communica-
tions [38] and consolidates experience-dependent processes [32].
The willingness to explore in an unforeseen territory may be driven
by curiosity, which is determined by several motivational intents,
including novelty seeking, learning, and uncertainty resolving.
Co-occurrence of decreased PFC and increased dHPC theta activi-
ties suggests that multiple modalities influence the emergence of
exploration. These hypotheses need to be tested further to under-
stand how different motivational modalities influence free explo-
ration and the coordination of brain areas involved in the
exploratory behavior.
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