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This study introduces a new method for detecting and sorting spikes from
multiunit recordings. The method combines the wavelet transform, which
localizes distinctive spike features, with superparamagnetic clustering,
which allows automatic classification of the data without assumptions
such as low variance or gaussian distributions. Moreover, an improved
method for setting amplitude thresholds for spike detection is proposed.
We describe several criteria for implementation that render the algorithm
unsupervised and fast. The algorithm is compared to other conventional
methods using several simulated data sets whose characteristics closely
resemble those of in vivo recordings. For these data sets, we found that
the proposed algorithm outperformed conventional methods.

1 Introduction

Many questions in neuroscience depend on the analysis of neuronal spik-
ing activity recorded under various behavioral conditions. For this reason,
data acquired simultaneously from multiple neurons are invaluable for elu-
cidating principles of neural information processing. Recent advances in
commercially available acquisition systems allow recordings of up to hun-
dreds of channels simultaneously, and the reliability of these data criti-
cally depends on accurately identifying the activity of individual neurons.
However, developments of efficient and reliable computational methods
for classifying multiunit data, that is, spike sorting algorithms, lag behind
the capabilities afforded by current hardware. In practice, supervised spike
sorting of a large number of channels is highly time-consuming and nearly
impossible to perform during the course of an experiment.
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The basic algorithmic steps of spike classification are as follows: (1) spike
detection, (2) extraction of distinctive features from the spike shapes, and
(3) clustering of the spikes by these features. Spike sorting methods are
typically based on clustering predefined spike shape features such as peak-
to-peak amplitude, width, or principal components (Abeles & Goldstein,
1977; Lewicki, 1998). Nevertheless, it is impossible to know beforehand
which of these features is optimal for discriminating between spike classes
in a given data set. In the specific case where the spike features are projec-
tions on the first few principal components, the planes onto which the spikes
are projected maximize the variance of data but do not necessarily provide
an optimal separation between the clusters. A second critical issue is that
even when optimal features from a given data set are used for classification,
the distribution of the data imposes additional constraints on the clustering
procedure. In particular, violation of normality in a given feature’s distribu-
tion compromises most unsupervised clustering algorithms, and therefore
manual clustering of the data is usually preferred. However, besides being a
very time-consuming task, manual clustering introduces errors due to both
the limited dimensionality of the cluster cutting space and human biases
(Harris, Henze, Csicsvari, Hirase, & Buzsáki, 2000). An alternative approach
is to define spike classes by a set of manually selected thresholds (window
discriminators) or with spike templates. Although this is computationally
very efficient and can be implemented on-line, it is reliable only when the
signal-to-noise ratio is very high and it is limited to the number of channels
a human operator is able to supervise.

In this article, we introduce a new method that improves spike separa-
tion in the feature space and implements a novel unsupervised clustering
algorithm. Combining these two features results in a novel unsupervised
spike sorting system. The cornerstones of our method are the wavelet trans-
form, which is a time-frequency decomposition of the signal with optimal
resolution in both the time and the frequency domains, and superparam-
agnetic clustering (SPC; Blatt, Wiseman, & Domany, 1996), a relatively new
clustering procedure developed in the context of statistical mechanics. The
complete algorithm encompasses three principal stages: (1) spike detec-
tion, (2) selection of spike features, and (3) clustering of the selected spike
features.

In the first step, spikes are detected with an automatic amplitude thresh-
old on the high-pass filtered data. In the second step, a small set of wavelet
coefficients from each spike is chosen as input for the clustering algorithm.
Finally, the SPC classifies the spikes according to the selected set of wavelet
coefficients. We stress that the entire process of detection, feature extraction,
and clustering is performed without supervision and relatively quickly. In
this study, we compare the performance of the algorithm with other meth-
ods using simulated data that closely resemble real recordings. The rationale
of using simulated data is to obtain an objective measure of performance,
since the simulation sets the identity of the spikes.
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2 Theoretical Background

2.1 Wavelet Transform. The wavelet transform (WT) is a time-frequency
representation of the signal that has two main advantages over conven-
tional methods: it provides an optimal resolution in both the time and the
frequency domains, and it eliminates the requirement of signal stationar-
ity. It is defined as the convolution between the signal x(t) and the wavelet
functions ψa,b(t),

WψX(a, b) = 〈x(t) | ψa,b(t)〉, (2.1)

where ψa,b(t) are dilated (contracted), and shifted versions of a unique
wavelet function ψ(t),

ψa,b(t) = |a|− 1
2ψ

(
t − b

a

)
(2.2)

where a and b are the scale and translation parameters, respectively. Equa-
tion 2.1 can be inverted, thus providing the reconstruction of x(t).

The WT maps the signal that is represented by one independent variable
t onto a function of two independent variables a, b. This procedure is redun-
dant and inefficient for algorithmic implementations; therefore, the WT is
usually defined at discrete scales a and discrete times b by choosing the set
of parameters {aj = 2−j; bj,k = 2−jk}, with integers j and k. Contracted ver-
sions of the wavelet function match the high-frequency components, while
dilated versions match the low-frequency components. Then, by correlating
the original signal with wavelet functions of different sizes, we can obtain
details of the signal at several scales. These correlations with the different
wavelet functions can be arranged in a hierarchical scheme called multires-
olution decomposition (Mallat, 1989). The multiresolution decomposition
algorithm separates the signal into details at different scales and a coarser
representation of the signal named “approximation” (for details, see Mallat,
1989; Chui, 1992; Samar, Swartz, & Raghveer, 1995; Quian Quiroga, Sakow-
icz, Basar, & Schürmann, 2001; Quian Quiroga & Garcia, 2003).

In this study we implemented a four-level decomposition using Haar
wavelets, which are rescaled square functions. Haar wavelets were chosen
due to their compact support and orthogonality, which allows the discrimi-
native features of the spikes to be expressed with a few wavelet coefficients
and without a priori assumptions on the spike shapes.

2.2 Superparamagnetic Clustering. The following is a brief description
of the key ideas of superparamagnetic clustering (SPC), which is based on
simulated interactions between each data point and its K-nearest neighbors
(for details, see Blatt et al., 1996; Blatt, Wiseman, & Domany, 1997). The
method is implemented as a Monte Carlo iteration of a Potts model. The
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Potts model is a generalization of the Ising model where instead of having
spins with values ±1/2, there are q different states per particle (Binder &
Heermann, 1988).

The first step is to represent the m selected features of each spike i by a
point xi in an m-dimensional phase space. The interaction strength between
points xi is then defined as

Jij =




1
K

exp

(
−‖xi − xj‖2

2a2

)
if xi is a nearest neighbor of xj,

0 else
(2.3)

where a is the average nearest-neighbors distance and K is the number of
nearest neighbors. Note that the strength of interaction Jij between nearest-
neighbor spikes falls off exponentially with increasing Euclidean distance
dij = ‖xi − xj‖2, which corresponds to the similarity of the selected features
(i.e., similar spikes will have a strong interaction).

In the second step, an initial random state s from 1 to q is assigned to each
point xi. Then N Monte Carlo iterations are run for different temperatures T
using the Wolf algorithm (Wolf, 1989; Binder & Heermann, 1988). Blatt et al.
(1997) used a Swendnsen-Wang algorithm instead, but its implementation
and performance are both very similar. The advantage of both algorithms
over simpler approaches such as the Metropolis algorithm is their enhanced
performance in the superparamagnetic regime (see Binder & Heermann,
1988; Blatt et al., 1997, for details). The main idea of the Wolf algorithm is
that given an initial configuration of states s, a point xi is randomly selected
and its state s changed to a new state snew, randomly chosen between 1 and
q. The probability that the nearest neighbors of xi will also change their state
to snew is given by

pij = 1 − exp
(

− Jij

T
δsi,sj

)
, (2.4)

where T is the temperature (see below). Note that only those nearest neigh-
bors of xi that were in the same previous state s are the candidates to change
their values to snew. Neighbors that change their values create a “frontier”
and cannot change their value again during the same iteration. Points that
do not change their value in a first attempt can do so if revisited during the
same iteration. Then for each point of the frontier, we apply equation 2.4
again to calculate the probability of changing the state to snew for their re-
spective neighbors. The frontier is updated, and the update is repeated until
the frontier does not change any more. At that stage, we start the procedure
again from another point and repeat it several times in order to get represen-
tative statistics. Points that are relatively close together (i.e., corresponding
to a given cluster) will change their state together. This observation can be
quantified by measuring the point-point correlation 〈δsi,sj〉 and defining xi,
xj to be members of the same cluster if 〈δsi,sj〉 ≥ θ , for a given threshold θ .
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As in Blatt et al. (1996), we used q = 20 states, K = 11 nearest neighbors,
N = 500 iterations, and θ = 0.5. It has indeed been shown that clustering
results mainly depend on the temperature and are robust to small changes
in the previous parameters (Blatt et al., 1996).

Let us now discuss the role of the temperature T. Note from equation 2.4
that high temperatures correspond to a low probability of changing the state
of neighboring points together, whereas low temperatures correspond to a
higher probability regardless of how weak the interaction Jij is. This has a
physical analogy with a spin glass, in which at a relatively high temperature,
all the spins are switching randomly, regardless of their interactions (para-
magnetic phase). At a low temperature, the entire spin glass changes its
state together (ferromagnetic phase). However, at a certain medium range
of temperatures, the system reaches a “superparamagnetic” phase in which
only those spins that are grouped together will change their state simulta-
neously. Regarding our clustering problem, at low temperatures, all points
will change their state together and will therefore be considered as a single
cluster; at high temperatures, many points will change their state indepen-
dently from one another, thus partitioning the data into several clusters
with only a few points in each; and for temperatures corresponding to the
superparamagnetic phase, only those points that are grouped together will
change their state simultaneously.

Figure 1A shows a two-dimensional (2D) example in which 2400 2D
points were distributed in three different clusters. Note that the clusters
partially overlap, they have a large variance, and, moreover, the centers fall
outside the clusters. In particular, the distance between arbitrarily chosen
points of the same cluster can be much larger than the distance between
points in different clusters. These features render the use of conventional
clustering algorithms unreliable. The different markers represent the out-
come after clustering with SPC. Clearly, most of the points were correctly
classified. In fact, only 102 of 2400 (4%) data points were not classified be-
cause they were near the boundaries of the clusters. Figure 1B shows the
number of elements assigned to each given cluster as a function of the tem-
perature. At low temperatures, we have a single cluster with all 2400 data
points included. At a temperature between 0.04 and 0.05, this cluster breaks
down into three subclusters corresponding to the superparamagnetic transi-
tion. The classification shown in the upper plot was performed at T = 0.05.
At about T = 0.08, we observe the transition to the paramagnetic phase,
where the clusters break down into several groups with a few members each.

Note that the algorithm is based on K-nearest neighbor interactions and
therefore does not assume that clusters are nonoverlapping or that they
have low variance or a gaussian distribution.

3 Description of the Method

Figure 2 summarizes the three principal stages of the algorithm: (1) spikes
are detected automatically via amplitude thresholding; (2) the wavelet trans-
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Figure 1: Example showing the performance of superparamagnetic clustering.
(A) The two-dimensional data points used as inputs. The different markers rep-
resent the outcome of the clustering algorithm. (B) Cluster size vs. temperature.
At temperature 0.05, the transition to the superparamagnetic phase occurs, and
the three clusters are separated.

form is calculated for each of the spikes and the optimal coefficients for
separating the spike classes are automatically selected; and (3) the selected
wavelet coefficients then serve as the input to the SPC algorithm, and cluster-
ing is performed after automatic selection of the temperature corresponding
to the superparamagnetic phase. (A Matlab implementation of the algorithm
can be obtained on-line from www.vis.caltech.edu/∼rodri.)

3.1 Spike Detection. Spike detection was performed by amplitude
thresholding after bandpass filtering the signal (300–6000 Hz, four pole
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Figure 2: Overview of the automatic clustering procedure. (A) Spikes are de-
tected by setting an amplitude threshold. (B) A set of wavelet coefficients rep-
resenting the relevant features of the spikes is selected. (C) The SPC algorithm
is used to cluster the spikes automatically.
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butterworth filter). The threshold (Thr) was automatically set to

Thr = 4σn; σn = median
{ |x|

0.6745

}
, (3.1)

where x is the bandpass-filtered signal and σn is an estimate of the stan-
dard deviation of the background noise (Donoho & Johnstone, 1994). Note
that taking the standard deviation of the signal (including the spikes) could
lead to very high threshold values, especially in cases with high firing rates
and large spike amplitudes. In contrast, by using the estimation based on
the median, the interference of the spikes is diminished (under the reason-
able assumption that spikes amount to a small fraction of all samples). To
demonstrate this, we generated a segment of 10 sec of background noise
with unit standard deviation, and in successive simulations, we added a
distinct spike class with different firing rates. Figure 3 shows that for noise
alone (i.e., zero firing rate), both estimates are equal, but as the firing rate
increases, the standard deviation of the signal (conventional estimate) gives
an increasingly erroneous estimate of the noise level, whereas the improved
estimate from equation 3.1 remains close to the real value.

For each detected spike, 64 samples (i.e., ∼2.5 ms) were saved for further
analysis. All spikes were aligned to their maximum at data point 20. In
order to avoid spike misalignments due to low sampling, spike maxima
were determined from interpolated waveforms of 256 samples, using cubic
splines.

3.2 Selection of Wavelet Coefficients. After spikes are detected, their
wavelet transform is calculated, thus obtaining 64 wavelet coefficients for
each spike. We implemented a four-level multiresolution decomposition
using Haar wavelets. As explained in section 2.1, each wavelet coefficient
characterizes the spike shapes at different scales and times. The goal is to
select a few coefficients that best separate the different spike classes. Clearly,
such coefficients should have a multimodal distribution (unless there is
only one spike class). To perform this selection automatically, the Lilliefors
modification of a Kolmogorov-Smirnov (KS) test for normality was used
(Press, Teukolsky, Vetterling, & Flannery, 1992). Note that we do not rely on
any particular distribution of the data; rather, we are interested in deviation
from normality as a sign of a multimodal distribution. Given a data set x, the
test compares the cumulative distribution function of the data (F(x)) with
that of a gaussian distribution with the same mean and variance (G(x)).
Deviation from normality is then quantified by

max(|F(x)− G(x)|). (3.2)

In our implementation, the first 10 coefficients with the largest deviation
from normality were used. The selected set of wavelet coefficients provides
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Figure 3: Estimation of noise level used for determining the amplitude thresh-
old. Note how the conventional estimation based on the standard deviation of
the signal increases with the firing rate, whereas the improved estimation from
equation 3.1 remains close to the real value. See the text for details.

a compressed representation of the spike features that serves as the input
to the clustering algorithm.

Overlapping spikes (i.e., spikes from different neurons appearing quasi-
simultaneously) introduce outliers in the distribution of the wavelet coeffi-
cients that cause deviations from normality in unimodal (as well as multi-
modal) distributions, thus compromising the use of the KS test as an estima-
tion of multimodality. In order to minimize this effect, for each coefficient
we only considered values within ±3 standard deviations.

3.3 SPC and Localization of the Superparamagnetic Phase. Once the
selected set of wavelet coefficients is chosen, we run the SPC algorithm for
a wide range of temperatures spanning the ferromagnetic, superparamag-
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netic, and paramagnetic phases. In order to localize the superparamagnetic
phase automatically, a criterion based on the cluster sizes is used. The idea
is that for both the paramagnetic and ferromagnetic phases, temperature in-
creases can only lead to the creation of clusters with few members each. In-
deed, in the paramagnetic phase (i.e., high temperature), the clusters break
down into several small ones, and in the ferromagnetic phase, there are
almost no changes when the temperature is increased. In contrast, in the
superparamagnetic phase, increasing the temperature creates new clusters
with a large number of members.

In our implementation, we varied the temperature from 0 to 0.2 in in-
crements of 0.01 and looked for the highest temperature at which a clus-
ter containing more than 60 points appeared (not being present at lower
temperatures). Since our simulations were 60 sec long, this means that we
considered clusters corresponding to neurons with a mean firing rate of at
least 1 Hz. The threshold of 1 Hz gave us optimal results for all our sim-
ulations, but it should be decreased if one considers neurons with lower
firing rates. Alternatively, one can consider a fraction of the total number
of spikes. If no cluster with a minimum of 60 points was found, we kept
the minimum temperature value. Using this criterion, we can automatically
select the optimal temperature for cluster assignments, and therefore the
whole clustering procedure becomes unsupervised.

4 Data Simulation

Simulated signals were constructed using a database of 594 different av-
erage spike shapes compiled from recordings in the neocortex and basal
ganglia. For generating background noise, spikes randomly selected from
the database were superimposed at random times and amplitudes. This was
done for half the times of the samples. The rationale was to mimic the back-
ground noise of actual recordings that is generated by the activity of distant
neurons. Next, we superimposed a train of three distinct spike shapes (also
preselected from the same database of spikes) on the noise signal at random
times. The amplitude of the three spike classes was normalized to have a
peak value of 1. The noise level was determined from its standard deviation,
which was equal to 0.05, 0.1, 0.15, and 0.2 relative to the amplitude of the
spike classes. In one case, since clustering was relatively easy, we also con-
sidered noise levels 0.25, 0.30, 0.35, and 0.4. Spike times and identities were
saved for subsequent evaluation of the clustering algorithm. The data were
first simulated at a sampling rate of 96,000 Hz, and by using interpolated
waveforms of the original spike shapes, we simulated the spike times to
fall continuously between samples (to machine precision). Finally, the data
were downsampled to 24,000 Hz. This procedure was introduced in order
to imitate actual recording conditions in which samples do not necessarily
fall on the same features within a spike (i.e., the peak of the signal does not
necessarily coincide with a discrete sample).
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In all simulations, the three distinct spikes had a Poisson distribution
of interspike intervals with a mean firing rate of 20 Hz. A 2 ms refractory
period between spikes of the same class was introduced. Note that the back-
ground noise reproduces spike shape variability in biological signals (Fee,
Mitra, & Kleinfeld, 1996; Pouzat, Mazor, & Laurent, 2002). Moreover, con-
structing noise from spikes ensures that this noise shares a similar power
spectrum with the spikes themselves (1/f spectrum). The realistic simula-
tion conditions applied here render the entire procedure of spike sorting
more challenging than, for example, assuming a white noise distribution of
background activity. Further complications of real recordings (e.g., overlap-
ping spikes, bursting activity, moving electrodes) will be addressed in the
next section.

Figure 4 shows one of the simulated data sets with a noise level 0.1.
Figure 4A discloses the three spike shapes that were added to the back-
ground noise, as shown in Figure 4B. Figure 4C shows a section of the data
in Figure 4B in finer temporal resolution. Note the variance in shape and
amplitude between spikes of the same class (identified with a marker of the
same gray level) due to the additive background noise. Figure 5 shows an-
other example with noise level 0.15, in which classification is considerably
more difficult than in the first data set. Here, the three spike classes share the
same peak amplitudes and very similar widths and shapes. The differences

0 50 100 150 200 250 300
−1

−0.5

0

0.5

1

Samples
0 1 2 3 4 5

−1.5

−1

−0.5

0

0.5

1

1.5

Time (sec)

0.9 0.92 0.94 0.96 0.98 1 1.02

−1

−0.5

0

0.5

1

1.5

Time (sec)

Class 1
Class 2
Class 3

A) 

C) 

B) 

1 2133 12 3 1 2

Figure 4: Simulated data set used for spike sorting. (A) The three template
spike shapes. (B) The previous spikes embedded in the background noise. (C)
The same data with a magnified timescale. Note the variability of spikes from
the same class due to the background noise.
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Figure 5: Another simulated data set. (A) The three template spike shapes. (B)
The previous spikes embedded in the background noise. (C) The same data
with a magnified timescale. Here the spike shapes are more difficult to differen-
tiate. Note in the lower plot that the variability in the spike shapes makes their
classification difficult.

between them are relatively small and temporally localized. By adding the
background noise, it appears to be very difficult to identify the three spike
classes (see Figure 5C). As with the previous data set, the variability of
spikes of the same class is apparent.

All the data sets used in this article are available on-line at www.vis.
caltech.edu/∼rodri.

5 Results

The method was tested using four generic examples of 60 sec length, each
simulated at four different noise levels, as described in the previous section.
Since the first example was relatively easy to cluster, in this case we also
generated four extra time series with higher noise levels.

5.1 Spike Detection. Figures 4 and 5 show two of the simulated data
sets. The horizontal lines drawn in Figures 4B and C and 5B and C are
the thresholds for spike detection using equation 3.1. Table 1 summarizes
the performance of the detection procedure for all data sets and noise lev-
els. Detection performances for overlapping spikes (i.e., spike pairs within
64 data points) are reported separately (values in brackets). Overlapping
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Table 1: Number of Misses and False Positives for the Different Data Sets.

Example Number
(Noise Level) Number of Spikes Misses False Positives

Example 1 [0.05] 3514 (785) 17 (193) 711
[0.10] 3522 (769) 2 (177) 57
[0.15] 3477 (784) 145 (215) 14
[0.20] 3474 (796) 714 (275) 10

Example 2 [0.05] 3410 (791) 0 (174) 0
[0.10] 3520 (826) 0 (191) 2
[0.15] 3411 (763) 10 (173) 1
[0.20] 3526 (811) 376 (256) 5

Example 3 [0.05] 3383 (767) 1 (210) 63
[0.10] 3448 (810) 0 (191) 10
[0.15] 3472 (812) 8 (203) 6
[0.20] 3414 (790) 184 (219) 2

Example 4 [0.05] 3364 (829) 0 (182) 1
[0.10] 3462 (720) 0 (152) 5
[0.15] 3440 (809) 3 (186) 4
[0.20] 3493 (777) 262 (228) 2

Notes: Noise level is represented in terms of its standard deviation relative
to the peak amplitude of the spikes. All spike classes had a peak value of 1.
Values in brackets are for overlapping spikes.

spikes hamper the detection performance because they are detected as sin-
gle events when they appear too close in time.

In comparison with the other examples, a relatively large number of
spikes were not detected in data set 1 for the highest noise levels (0.15 and
0.2). This is due to the spike class with opposite polarity (class 2 in Figure
4). In fact, setting up an additional negative threshold reduced the number
of misses from 145 to 5 for noise level 0.15 and from 714 to 178 for 0.2. In
the case of the overlapping spikes, this reduction is from 360 to 52 and from
989 to 134, respectively. In all other cases, the number of undetected spikes
was relatively low.

With the exception of the first two noise levels in example 1 and the
first noise level in example 3, the number of false positives was very small
(less than 1%). Lowering the threshold value in equation 3.1 (e.g., 3.5 σn)
would indeed reduce the number of misses but also increase the number of
false positives. The optimal trade-off between number of misses and false
positives depends on the experimenter’s preference, but we remark that
the automatic threshold of equation 3.1 gives an optimal value for different
noise levels. In the case of example 1 (noise level 0.05 and 0.1) and example
3 (noise level 0.05), the large number of false positives is exclusively due
to double detections. Since the noise level is very low in these cases, the
threshold is also low, and consequently, the second positive peak of the
class 3 spike shown in Figure 4 is detected. One solution would be to take a
higher threshold value (e.g., 4.5 σn), but this would not be optimal for high
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noise levels. Although double detections decrease the performance of the
detection algorithm, it does not represent a problem when considering the
whole spike sorting procedure. In practice, the false positives show up as
an additional cluster that can be disregarded later. For further testing of the
clustering algorithm, the complete data set of simulated spikes (with both
the detected and the undetected ones) will be used.

5.2 Feature Extraction. Figure 6 shows the wavelet coefficients for
spikes in the data set shown in Figure 4A and Figure 5B. For clarity, wavelet
coefficients of overlapping spikes are not plotted. Coefficients correspond-
ing to individual spikes are superimposed, each representing how closely
the spike waveform matches the wavelet function at a particular scale and
time. Coefficients are organized in detail levels (D1–4) and a last approxima-
tion (A4), which correspond to the different frequency bands in which spike
shapes are decomposed. Especially in Figure 6A, we observe that some of
the coefficients cluster around different values for the different spike classes,
thus being well suited for classification. Most of these coefficients are cho-
sen by the KS test, as shown with black markers. For comparison, the 10
coefficients with maximum variance are also marked. It is clear from this
figure that coefficients showing the best discrimination are not necessarily
the ones with the largest variance. In particular, the maximum variance cri-
terion misses several coefficients from the high-frequency scales (D1–D2)
that allow a good separation between the different spike shapes.

Figure 7 discloses the distribution of the 10 best wavelet coefficients from
Figure 6B (in this case, including coefficients corresponding to overlapping
spikes) using the KS criterion versus the maximum variance criterion. Three
wavelet coefficients out of the ten selected using the KS criterion show a de-
viation from normality that is not associated with multimodal distribution:
coefficient 42, showing a skewed distribution, and coefficients 19 and 10,
which, in addition to skewed distribution, have significant kurtosis mainly
due to the outliers introduced by the overlapping spikes. In the remaining
cases, the KS criterion selected coefficients with a multimodal distribution.
In contrast, with the exception of coefficient 20, the variance criterion selects
coefficients with a uniform distribution that hampers classification.

For the same data, in Figure 8 we show the best three-dimensional (3D)
projections of the wavelet coefficients selected with the KS criterion (Fig-
ure 8A), the variance criterion (Figure 8B) and projections of the first three
principal components (Figure 8C). In all cases, the clustering was done auto-
matically with SPC and is represented with different gray levels. We observe
that using the KS criterion, it is possible to clearly identify the three clus-
ters. In contrast, when choosing the coefficients with the largest variance,
it is possible to identify two out of three clusters, and when using the first
three principal components, only a single cluster is detected (the number
of classification errors is shown in Table 2, example 2, noise 0.15). Note also
that the cluster shapes can be quite elongated, thus challenging any cluster-
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Figure 6: Wavelet transform of the spikes from Figure 4 and Figure 5 (panes A
and B, respectively). Each curve represents the wavelet coefficients for a given
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Several wavelet coefficients are sensitive to localized features. (B) Separation is
much more difficult due to the similarity of the spike shapes. The markers show
coefficients selected based on the variance criteria and coefficients selected based
on deviation from normality. D1–D4 are the detail levels, and A4 corresponds to
the last approximation level.
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selects coefficients with multimodal distributions.
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by using the KS criterion is it possible to separate the three clusters. Clusters
assignment (shown with different gray levels) was done after use of SPC.
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Table 2: Number of Classification Errors for All Examples and Noise Levels
Obtained Using SPC, K-Means, and Different Spike Features.

Example Number Number of SPC K-means
(Noise Level) Spikes Wavelets PCA Spike Shape Feature Set Wavelets PCA

Example 1 [0.05] 2729 1 1 0 863 0 0
[0.10] 2753 5 17 0 833 0 0
[0.15] 2693 5 19 0 2015 (2) 0 0
[0.20] 2678 12 130 24 614 17 17
[0.25] 2586 64 911 266 1265 (2) 69 68
[0.30] 2629 276 1913 838 1699 (1) 177 220
[0.35] 2702 483 1926 (2) 1424 (2) 1958 (1) 308 515
[0.40] 2645 741 1738 (1) 1738 (1) 1977 (1) 930 733

Example 2 [0.05] 2619 3 4 2 502 0 0
[0.10] 2694 10 704 59 1893 (1) 2 53
[0.15] 2648 45 1732 (1) 1054 (2) 2199 (1) 31 336
[0.20] 2715 306 1791 (1) 2253 (1) 2199 (1) 154 740

Example 3 [0.05] 2616 0 7 3 619 0 1
[0.10] 2638 41 1781 794 1930 (1) 850 184
[0.15] 2660 81 1748 (1) 2131 (1) 2150 (1) 859 848
[0.20] 2624 651 1711 (1) 2449 (1) 2185 (1) 874 1170

Example 4 [0.05] 2535 1 1310 24 1809 (1) 686 212
[0.10] 2742 8 946 (2) 970 (2) 1987 (1) 271 579
[0.15] 2631 443 1716 (2) 1709 (1) 2259 (1) 546 746
[0.20] 2716 1462 (2) 1732 (1) 1732 (1) 1867 (1) 872 1004

Average 2662 232 1092 873 1641 332 371

Notes: In parentheses are the number of correct clusters detected when different from 3. The numbers
corresponding to the example shown on Figure 8 are underlined.

ing procedure based on Euclidean distances to the cluster centers, such as
K-means.

5.3 Clustering of the Spike Features. In Figure 9, we show the perfor-
mance of the algorithm for the first data set (shown in Figure 4). In Figure 9A,
we plot the cluster sizes as a function of the temperature. At a temperature
T = 0.02, the transition to the superparamagnetic phase occurs. As the tem-
perature is increased, a transition to the paramagnetic regime takes place
at T = 0.12. The temperature T = 0.02 (vertical dotted line) is determined
for clustering based on the criterion described in section 3.3. In Figure 9B,
we see the classification after clustering and in Figure 9C the original spike
shapes (without the noise). In this case, spike shapes are easy to differentiate
due to the large negative phase of the class 1 spikes and the initial negative
peak of the class 3 spikes.

Figure 10 shows the other three data sets with a noise level 0.1. In all these
cases, the classification errors were very low (see Table 2). Note also that
many overlapping spikes were correctly classified (those in color), especially
when the latency between the spike peaks was larger than about 0.5 ms.
Pairs of spikes appearing with a lower time separation are not clustered
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Figure 9: (A) Cluster size vs. temperature. Based on the stability criterion of
the clusters, a temperature of 0.02 was automatically chosen for separating the
three spike classes. (B) All spikes with gray levels according to the outcome of
the clustering algorithm. Note the presence of overlapping spikes. (C) Original
spike shapes.

by the algorithm (in gray) but can, in principle, be identified in a second
stage by using the clustered spikes as templates. Then one should look for
the combination (allowing delays between the spike templates) that best
reproduces the nonclustered spike shapes. This procedure is outside the
scope of this study and will not be further addressed.
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Figure 10: Outcome of the clustering algorithm for the three remaining exam-
ples. The inset plots show the original spike shapes. Most of the classification
errors (gray traces) are due to overlapping spikes with short temporal separa-
tion.
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5.4 Comparison with Other Spike Features. Errors of spike identifi-
cation cumulatively derive from two sources: incorrect feature extraction
and incorrect clustering. First, we compared the discrimination power of
wavelets at different noise levels with other feature extraction methods us-
ing the same clustering algorithm, SPC. Specifically, we compared the out-
come of classification with wavelets, principal component analysis (using
the first three principal components), the whole spike shape, and a fixed set
of spike features. The spike features were the mean square value of the sig-
nal (energy), the amplitude of the main peak, and the amplitude of the peaks
preceding and following it. The width of the spike (given by the position of
the three peaks) was also tested but found to worsen the spike classification.
Table 2 summarizes the results (examples 1 and 2 were shown in Figures 4
and 5, respectively). Performance was quantified in terms of the number of
classification errors and the number of clusters detected. Values in brackets
denote the number of clusters detected, when different from 3. Errors due
to overlapping spikes are not included in the table (but overlapping spikes
were also inputs to the algorithm). Since example 1 was easier to cluster, in
this case we also analyzed four higher noise levels.

In general, the best performance was achieved using the selected wavelet
coefficients as spike features. In fact, with wavelets, all three clusters are
correctly detected, with the exception of example 4, noise level 0.2. Using
the other features, only one cluster is detected when increasing the noise
level. Considering all wavelet coefficients as inputs to SPC (i.e., without the
selection based on the KS test) gave nearly the same results as those ob-
tained using the entire spike shape (not shown). This is not surprising since
the wavelet transform is linear, which implies rotations or rescaling of the
original high-dimensional space. The clear benefit is introduced when con-
sidering only those coefficients that allow a good separation between the
clusters, using the KS test. Note that PCA features gave slightly worse re-
sults than those using the entire spike shapes (and clearly worse than using
wavelets). Therefore, PCA gives a reasonable solution when using clustering
algorithms that cannot handle high-dimensional spaces (although this is not
a problem for SPC). The fixed features, such as peak amplitudes and mean
squared values, were much less efficient. This was expected since spike
classes were generated with the same peak value and in some cases also
with very similar shapes that could not be discriminated by these features.
We remark that the number of detected clusters decreases monotonically
with noise level, but the number of classification errors does not necessarily
increase monotonically because even when three clusters are correctly rec-
ognized, a large number of spikes may remain unassigned to any of them
(see, e.g., example 4 with PCA for noise levels 0.05 and 0.1).

5.5 Comparison with Other Clustering Algorithms. A number of dif-
ferent clustering algorithms can be applied for spike sorting, and the choice
of an optimal one is important in order to exploit the discrimination power



1682 R. Quiroga, Z. Nadasdy, and Y. Ben-Shaul

of the feature space. The most used algorithms are supervised and usually
assume gaussian shapes of the clusters and specific properties of the noise
distribution. In order to illustrate the difference with these methods, we
will compare results using SPC with those obtained using K-means. The
partitioning of data by K-means keeps objects of the same cluster as close
as possible (using Euclidean distance in our case) and as far as possible
from objects in the other clusters. The standard K-means algorithm leaves
no unclassified items, but the total number of clusters should be prede-
fined (therefore being a supervised method). These constraints simplify the
clustering problem and give an advantage to K-means in comparison to
SPC, since in the first case, we know that each object should be assigned
to one of the three clusters. The right-most two columns of Table 2 show
the clustering performance using K-means with wavelets and PCA. De-
spite being unsupervised, SPC applied on the wavelet features gives the
best performance. For spike shapes relatively easy to differentiate (Table 2,
examples 1 and 2), the outcomes with wavelets are similar using K-means
or SPC. However, the advantage of SPC with wavelet becomes apparent
when spike shapes are more similar (Table 2, examples 3 and 4). We remark
that with SPC, points may remain unclassified, whereas with K-means, all
points are assigned to one of the three clusters (thus having at least a 33%
chance of being correctly classified). This led K-means to outperform SPC
for example 4, at noise level 0.2, where only two out of three clusters were
identified with SPC. In general, the number of classification errors using
PCA with K-means is higher than the ones using wavelets with K-means.
The few exceptions where PCA outperformed wavelets with using K-means
(example 3 at noise level 0.1; example 4 at noise level 0.05) can be attributed
to the presence of more elongated cluster shapes obtained with wavelets
that K-means fails to separate.

5.6 Simulations with Nongaussian Spike Distributions. In this sec-
tion, we consider conditions of real recordings that may compromise the
performance of the proposed clustering algorithm. In particular, we will
simulate the effect of an electrode moving with respect to one of the neu-
rons, bursting activity, and a correlation between the spikes and the local
field potential. Clearly, these situations are difficult to handle with algo-
rithms that assume a particular distribution of the noise. In fact, all of these
cases add a nongaussian component to the spike shape variance.

For simulating a moving electrode, we use the example shown in Figure 5
(example 2, noise 0.15 in Table 2), but in this case, we progressively decreased
the amplitude of the first spike class (linearly) with time from a value of 1 at
the beginning of the recording to 0.3 at the end. Using SPC with wavelet, it
was still possible to detect all three clusters, and from a total of 2692 spikes,
the number of classification errors was only of 48.

Second, we simulated a bursting cell based also on the example shown
in Figure 5. The first class consisted of three consecutive spikes with ampli-
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tudes 1.0, 0.7, and 0.5, separated by 3 ms in average (SD = 1, range, 1–5 ms).
From a total of 2360 spikes, again the three clusters were correctly detected,
and we had 25 classification errors using wavelets with SPC.

Finally we considered a correlation between the spike amplitudes and
the background activity, similar to the condition when spikes co-occur with
local field events. We used the same spike shapes and noise level shown
in Figure 5, but the spike amplitudes varied from 0.5 to 1 depending on
the amplitude of the background activity at the time of the spike (0.5 when
the background activity reached its minimum and 1.0 when it reached its
maximum). In this case, again, the three clusters were correctly detected,
and we had 439 classification errors from a total of 2706 spikes.

6 Discussion

We presented a method for detection and sorting neuronal multiunit activ-
ity. The procedure is fully unsupervised and fast, thus being particularly
interesting for the classification of spikes from a large number of channels
recorded simultaneously. To obtain a quantitative measure of its perfor-
mance, the method was tested on simulated data sets with different noise
levels and similar spike shapes. The noise was generated by superposition of
a large number of small-amplitude spikes, resembling characteristics of real
recordings. This makes the spectral characteristics of noise and spikes simi-
lar, thus increasing the difficulty in detection and clustering. The proposed
method had an overall better performance than conventional approaches,
such as using PCA for extracting spike features or K-means for clustering.

Spike detection was achieved by using an amplitude threshold on the
high-pass filtered data. The threshold value was calculated automatically
using the median of the absolute value of the signal. The advantage of this
estimation, rather than using the variance of the overall signal, is that it
diminishes the dependence of the threshold on the firing rate and the peak-
to-peak amplitude of the spikes, thus giving an improved estimation of the
background noise level. Indeed, high firing rates and high spike amplitudes
lead to an overestimation of the appropriate threshold value. In terms of the
number of misses and number of false positives, the proposed automatic
detection procedure had good performance for the different examples and
noise levels.

The advantage of using the wavelet transform as a feature extractor is that
very localized shape differences of the different units can be discerned. The
information about the shape of the spikes is distributed in several wavelet
coefficients, whereas with PCA, most of the information about the spike
shapes is captured only by the first three principal components (Letelier
& Weber, 2000; Hulata, Segev, Shapira, Benveniste, & Ben-Jacob, 2000; Hu-
lata, Segev, & Ben-Jacob, 2002), which are not necessarily optimal for cluster
identification (see Figure 7). Moreover, wavelet coefficients are localized
in time. In agreement with these considerations, a better performance of
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wavelet coefficients in comparison with PCA was shown for several exam-
ples generated with different noise levels. For comparison, we also used the
whole spike shape as input to the clustering algorithm. As shown in Table
2, the dimensionality reduction achieved with the KS test clearly improves
the clustering performance. Since wavelets are a linear transform, using all
the wavelet coefficients yields nearly the same results as taking the entire
spike shape (as it is just a rescaling of the space). Since the need of a low-
dimensional space is a limiting factor for many clustering algorithms, the
dimensionality reduction achieved by combining wavelets with the KS test
may have a broad range of interest.

The use of wavelets for spike sorting has been proposed recently by Lete-
lier et al. (2000) and Hulata et al. (2000, 2002). Our approach differs from
theirs in several aspects, most notably by the implementation of our algo-
rithm as a single unsupervised process. One key feature of our algorithm
is the choice of wavelet coefficients by using a Kolmogorov-Smirnov test of
normality, thus selecting features that give an optimal separation between
the different clusters. Letelier et al. (2000) suggested to visually select those
wavelet coefficients with the largest mean, variance, and, most fundamen-
tal, multimodal distribution. However, neither a large average nor a large
variance entitles the given coefficient to be the best separator. In contrast, we
considered only the multimodality of the distributions. In this respect, we
showed that coefficients in the low-frequency bands, with a large variance
and uniform distribution, are not appropriate for the separation of distinct
clusters. In contrast, they introduce dimensions with nonsegregated distri-
butions that in practice may compromise the performance of the clustering
algorithm. A caveat of the KS test as an estimator of multimodality is that it
can also select unimodal nongaussian distributions (those that are skewed
or have large kurtosis). In fact, this was the case of three coefficients shown
in Figure 7. Despite this limitation, the selection of wavelet coefficients with
the KS test gave optimal results that indeed outperformed other feature
selection methods.

The main caveat of PCA is that eigenvectors accounting for the largest
variance of the data are selected, but these directions do not necessarily pro-
vide the best separation of the spike classes. In other words, it may well be
that the information for separating the clusters is represented in principal
components with low eigenvalues, which are usually disregarded. In this
respect, our method is more reminiscent of independent component anal-
ysis (ICA), where directions with a minimum of mutual information are
chosen. Moreover, it has been shown that minimum mutual information
is related to maximum deviation from normality (Hyvarinen & Oja, 2000).
Hulata et al. (2000, 2002) proposed a criterion based on the mutual informa-
tion of all pairs of cluster combinations for selecting the best wavelet packet
coefficients. However, such an approach cannot be implemented in an un-
supervised way. In fact, Hulata and coworkers used previous knowledge
of the spike classes for selecting the best wavelet packets. A second caveat
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is the difficulty of estimating mutual information (Quian Quiroga, Kraskov,
Kreuz, & Grassberger, 2002) in comparison with the KS test of normality.

The second stage of the clustering algorithm is based on the use of su-
perparamagnetic clustering. This method is based on K-nearest neighbor
interactions and therefore does not require low variance, nonoverlapping
clusters, or a priori assumptions of a certain distribution of the data (e.g.,
gaussian). Superparamagnetic clustering has already been applied with ex-
cellent results to several clustering problems (Blatt et al., 1996, 1997; Do-
many, 1999). In our study, we demonstrated for the first time its applica-
tion to spike sorting. Moreover, it is possible to automatically locate the
superparamagnetic regime, thus making the entire sorting procedure un-
supervised. Besides the obvious advantage of unsupervised clustering, we
compared the results obtained with SPC to those obtained using K-means
(with Euclidean distance). Although this comparison should not be gen-
eralized to all existing clustering methods, it exemplifies the advantages
of SPC over methods that rely on the presence of gaussian distributions,
clusters with centers inside the cluster (see Figure 1 for counterexamples),
nonoverlapping clusters with low variance, and others. The performance of
K-means could in principle be improved by using another distance metric.
However, this would generally imply assumptions about the noise distri-
bution and its interference with spike variability. Such assumptions may
improve the clustering performance in some situations but may also be vi-
olated in other conditions of real recordings. Note that this comparison was
in principle unfair to SPC since K-means is a supervised algorithm where
the total number of clusters is given as an extra input. Of course, the to-
tal number of clusters is usually not known in real recording situations. In
general, besides the advantage of being unsupervised, SPC showed better
results than the ones obtained with K-means.

Overall, the presented results show an optimal performance of the clus-
tering algorithm in situations that resemble real recording conditions. How-
ever, we should stress that this clustering method should not be taken as a
black box giving the optimal spike sorting. When possible, it is always de-
sirable to confirm the validity of the results based on the shape and variance
of the spike shapes, the interspike interval distribution, the presence of a re-
fractory period, and so forth. Finally, we anticipate the generalization of the
method to tetrode recordings. Indeed, adding spike features from adjacent
channels should improve spike classification and reduce ambiguity.
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